Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Derivative Rules 3.3 Derivative of a Constant Derivative of a Constant For any constant C, d (C ) 0 dx Suppose f(x) is a constant function, that is, f(x) = C, where C is a constant. Since the value of the function never changes, the instantaneous rate of change must be zero. Examples: d (2) 0 dx f '( ) 0 dy 1 d 1 if y 0 dx 2 dx 2 Derivatives of Powers Derivative of a Power If n is any real number (n may or may not be an integer), d n ( x ) nx n1 dx Another way to remember this rule is “power in front, reduce the power by one”. Examples: d 4 ( x ) 4 x41 4 x3 dx f '(v 5 3 5 5 31 ) v 3 5 8 3 v 3 dy 1 dy d 1 d 2 2 if y 2 t 2 t 2t 21 2t 3 dt t dt dt t dt constant multiple rule: d du cu c dx dx examples: d n cx cnx n 1 dx d 7 x 5 7 5 x 4 35 x 4 dx constant multiple rule: d du cu c dx dx sum and difference rules: d du dv u v dx dx dx d du dv u v dx dx dx y x 2x 2 dy 3 separately) (Each term is treated 3 4x 4x y 4 x 12 dx y x 12 x 4 4 2 Derivatives of trig functions d sin x cos x dx d csc x csc x cot x dx d cos x sin x dx d sec x sec x tan x dx d tan x sec 2 x dx d 2 cot x csc x dx Example: Find the derivative of: 4 2 y x x 2 3 3 4 y ' 3x 2 x 0 3 2 8 y ' 3x x 3 2 Example: Find the derivative of: 3 y 2 x y 3x y ' 6 x 3 6 3 x 2 Example: Find the derivative of: y2 x y 2x 1 y ' 2 x 2 1 2 1 x x x 1 2 Example: Find the derivative of: y 5 sin x dy 0 cos x dx dy cos x dx Example: Find the horizontal tangents of: y x4 2x2 2 dy 4 x3 4 x dx Horizontal tangents occur when slope = zero. 4 x3 4 x 0 x3 x 0 x x 1 0 2 x x 1 x 1 0 x 0, 1, 1 Plugging the x values into the original equation, we get: y 2, y 1, y 1 (The function is even, so we only get two horizontal tangents.) Higher Order Derivatives y' ' y' ' ' 1st derivative y' d f (x) dx dy dx f ' ( x) f ' ' ( x) f ' ' ' ( x) 3rd derivative 2nd derivative d dy d y 2 dx dx dx 2 3 d y dx 3 Find the first 4 derivatives of: y x 3x 2 3 2 y ' 3x 6 x 2 y' ' 6 x 6 y' ' ' 6 f ( x) 0 4 Find the derivative of: y ( x 1) 2 y x2 2x 1 y' 2 x 2 We have to foil first! Find the slope of the curve y = 2cos(x) at: x 2 x y 2 cos x y ' 2 sin x 3 x y' 2 2 2 sin 2 2 3 y' 3 2 sin 3 2 3 y' 2 sin 0