Download Derivative Rules

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Derivative Rules
3.3
Derivative of a Constant
Derivative of a Constant
For any constant C, d (C )  0
dx
Suppose f(x) is a constant function, that is, f(x) = C,
where C is a constant. Since the value of the function
never changes, the instantaneous rate of change must
be zero.
Examples:
d
(2)  0
dx
f '( )  0
dy
1
d 1
if y      0
dx
2
dx  2 
Derivatives of Powers
Derivative of a Power
If n is any real number (n may or may not be an integer),
d n
( x )  nx n1
dx
Another way to remember this rule is “power in front,
reduce the power by one”.
Examples:
d 4
( x )  4 x41  4 x3
dx
f '(v
5 3
5  5 31
) v
3
5 8 3
 v
3
dy
1
dy d  1  d 2
2
if y  2  t 
  2    t   2t 21  2t 3
dt
t
dt dt  t  dt
constant multiple rule:
d
du
 cu   c
dx
dx
examples:
d n
cx  cnx n 1
dx
d
7 x 5  7  5 x 4  35 x 4
dx

constant multiple rule:
d
du
 cu   c
dx
dx
sum and difference rules:
d
du dv
u  v   
dx
dx dx
d
du dv
u  v   
dx
dx dx
y  x  2x  2
dy
3 separately)
(Each term is 
treated
3
4x  4x
y  4 x  12
dx
y  x  12 x
4
4
2

Derivatives of trig functions
d
sin x  cos x
dx
d
csc x   csc x cot x
dx
d
cos x   sin x
dx
d
sec x  sec x tan x
dx
d
tan x  sec 2 x
dx
d
2
cot x   csc x
dx
Example: Find the derivative of:
4 2
y  x  x 2
3
3
4
y '  3x   2 x  0
3
2
8
y '  3x  x
3
2
Example: Find the derivative of:
3
y 2
x
y  3x
y '  6 x
3
6
 3
x
2
Example: Find the derivative of:
y2 x
y  2x
1
y '  2  x
2

1
2
1
x


x
x
1
2
Example: Find the derivative of:
y  5  sin x
dy
 0  cos x
dx
dy
 cos x
dx
Example:
Find the horizontal tangents of:
y  x4  2x2  2
dy
 4 x3  4 x
dx
Horizontal tangents occur when slope = zero.
4 x3  4 x  0
x3  x  0
x  x  1  0
2
x  x  1 x 1  0
x  0, 1, 1
Plugging the x values into the
original equation, we get:
y  2, y  1, y  1
(The function is even, so we
only get two horizontal
tangents.)

Higher Order Derivatives
y' '
y' ' '
1st derivative
y'
d
f (x)
dx
dy
dx
f ' ( x)
f ' ' ( x)
f ' ' ' ( x)
3rd derivative
2nd derivative
d  dy  d y
  2
dx  dx  dx
2
3
d y
dx 3
Find the first 4 derivatives of:
y  x  3x  2
3
2
y '  3x  6 x
2
y' '  6 x  6
y' ' '  6
f ( x)  0
4
Find the derivative of:
y  ( x  1) 2
y  x2  2x 1
y'  2 x  2
We
have to
foil first!
Find the slope of the curve y = 2cos(x) at:

x
2
x

y  2 cos x
y '  2 sin x
3
x 
 
y' 
 2


2
  2 sin
2

  2 3
  
y' 

 3
  2 sin
3
2
 3 
y'    2 sin   0
Related documents