Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Verifying Trig Identities (5.1) JMerrill, 2009 (contributions from DDillon) Trig Identities Identity: an equation that is true for all values of the variable for which the expressions are defined Ex: sin x tan x  cos x or (x + 2) = x + 2 Conditional Equation: only true for some of the values Ex: tan x = 0 or x2 + 3x + 2 = 0 Recall y sin   r x cos   r y tan   x r csc   y r sec   x x cot   y Recall - Identities Reciprocal Identities sin   1 csc 1 cos  sec 1 tan   cot  Also true: 1 csc  sin  1 sec  cos 1 cot   tan  Recall - Identities Quotient Identities sin  tan   cos cos cot   sin  Fundamental Trigonometric Identities Negative Identities (even/odd) sin      sin  csc      csc cos     cos sec     sec tan      tan  cot      cot  These are the only even functions! Recall - Identities Cofunction Identities   sin   cos     2    cos  sin     2    tan   cot     2    cot   tan     2    sec  csc     2    csc  sec     2  Recall - Identities Pythagorean Identities sin   cos   1 2 2 1  cot   csc  2 2 tan   1  sec  2 2 Simplifying Trig Expressions • Strategies • Change all functions to sine and cosine (or at least into the same function) • Substitute using Pythagorean Identities • Combine terms into a single fraction with a common denominator • Split up one term into 2 fractions • Multiply by a trig expression equal to 1 • Factor out a common factor Simplifying # 1 cot x sin x cos x  sin x sin x cos x  sin x sin x  cos x 2 Simplifying #2 cos x  sin x sin x cos 2 x sin 2 x   sin x sin x 2 2 cos x  sin x  sin x 1  sin x  csc x Simplifying #3 1  cos x 2 cos x 2 2 sin x  2 cos x  tan x 2 Simplifying #4 cos x  sin x tan x sin x  cos x  sin x cos x 2 sin x  cos x  cos x 2 2 cos x sin x   cos x cos x 1  cos x  sec x Simplifying #5   2 sin x  cos   x  cos x 2  3  sin x  sin x cos x 3 2  sin x  sin x  cos x  2  sin x 2 Proof Strategies • Never cross over the equal sign (you cannot assume equality) • Transform the more complicated side of the identity into the simpler side. • Substitute using Pythagorean identities. • Look for opportunities to factor • Combine terms into a single fraction with a common denominator, or split up a single term into 2 different fractions • Multiply by a trig expression equal to 1. • Change all functions to sines and cosines, if the above ideas don’t work. ALWAYS TRY SOMETHING!!! Example sin  cos    csc  1  cos  sin  • Prove • 2 fractions that need to be added: • Shortcut:  sin   sin     cos   1  cos   1  cos    sin   sin2   cos   cos2  1  cos    sin   1  cos  1  cos   sin  1   csc  sin  Show cos x 1  cot x   cot x 2 2 2 cos 2 x 1  cot 2 x  1 + cot2x = csc2 x cos x  csc x  1 csc x  2 sin x 2 2 2 1 cos x 2 sin x 2 cos 2 x sin 2 x  cot x 2 tan x  cot x Prove  tan x 2 csc x tan x  cot x csc 2 x sin x cos x  cos x sin x csc 2 x sin x cos x  cos x sin x 2 csc x sin 2 x  cos 2 x sin x cos x csc2 x 1 sin x cos x 1 sin 2 x  sin 2 x  1   sin x cos x  1  sin x cos x  tan x