Download 6.5 Trigonometric Form of a Complex number

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
6.5 Trigonometric Form of a
Complex number
De Moivre’s theorem
Graph the Complex number 2+3i
On a Complex Plane
imaginary
real
Absolute Value of the Complex
number 4+3i
On a Complex Plane
a  bi  a  b
2
imaginary
2
4  3i  4  3  5
2
2
real
Trigonometric Form of a Complex
Number
Given: a + bi
z  r cos  i sin  
r cos , i  r sin  
r is called the Modulus
r

r  a b
θ is the Argument
2
b
tan 
a
2
Writing a Complex number in
Trigonometric form
Point: r cos , i  r sin  
z  4  5i
Writing a Complex number in
Trigonometric form
Point: r cos , i  r sin  
z  4  5i
r   4  5i 
 4  5  41
2
2
Writing a Complex number in
Trigonometric form
Point: r cos , i  r sin  
z  4  5i
r   4  5i 
 4  5  41
2
2
128 .7
5
 5 
tan  
 tan 
 
4
 4
1
  51.3 so   180  51.3  128.7
 51.3
Writing a Complex number in
Trigonometric form
Point: r cos , i  r sin   z   41Cos128.7  41Sin128.7
z  41Cos128.7  iSin128.7
z  4  5i
r   4  5i 
 4  5  41
2
2
z  41 cis128.7
tan  
5
 5 
 tan 
 
4
 4
1
  51.3 so   180  51.3  128.7
Product and Quotient of two
Complex Numbers
z  r Cos  iSin

z  r Cos  iSin 
1
1
1
2
2
2
1
2
z  z  r  r Cos     iSin  
1
2
1
2
1
2
1
z r
 Cos     iSin  
z r
1
1
1
2
2
z 0
2
2
1
2

2

Find the product
z  20cis17
1
z  15cis28
2
z  z  20 15cis45
1
2
 300cos 45  iSin45
Find the product
z  20cis17
1
z  15cis28
2
z  z  20 15cis45
1
2
 300cos 45  iSin45
 2
2 
 300

i   150 2  150i 2
2 
 2
Find the quotient
z  20cis17
1
z  15cis28
2
z  z  20 15cis(17  28)
1
2
 300cos(11)  iSin(11)
 3000.9816  (0.1908i )   294.48  57.24i
Power of Complex Numbers
De Moivre’s Theorem
z  r Cos  iSin 
z  r Cos2  iSin2 
2
2
z  r Cosn   iSinn 
n
n
Power of Complex Numbers
Solve
z  4cis135
z  16cis2 135
2
Power of Complex Numbers
Solve
z  4cis135
z  16cis2 135
2
z  16Cos270  iSin270
z  160   1i   16i
2
2
N th Roots of a Complex Number
Where k = 0, 1, 2, …., n - 1
n

   2k 
   2k  
r  Cos
  iSin

 n 
 n 

Find the Cube roots of 1000
K = 0, 1, 2..(3-1) done
3
2k
2k 

1000 Cos
 iSin

3
3 

20 
20  

10 Cos
 iSin
  10
3
3 

2(1)
21 

10 Cos
 iSin
  5  5i 3
3
3 

22 
22  

10 Cos
 iSin
  5  5i 3
3
3 

Homework
Page 457 – 459
# 1, 9, 17, 25, 33,
41, 49, 57, 65,
77, 85, 93, 101,
109
Homework
Page 457 – 459
# 5, 13, 21, 29,
37, 45, 53, 61,
73, 81, 89, 97,
105, 113
“I got the Power!!!”
Related documents