* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ee221_8
Switched-mode power supply wikipedia , lookup
Electronic engineering wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Operational amplifier wikipedia , lookup
Power dividers and directional couplers wikipedia , lookup
Topology (electrical circuits) wikipedia , lookup
Radio transmitter design wikipedia , lookup
Standing wave ratio wikipedia , lookup
Regenerative circuit wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Zobel network wikipedia , lookup
Scattering parameters wikipedia , lookup
Index of electronics articles wikipedia , lookup
Opto-isolator wikipedia , lookup
Flexible electronics wikipedia , lookup
Integrated circuit wikipedia , lookup
Rectiverter wikipedia , lookup
RLC circuit wikipedia , lookup
Circuits II EE221 Unit 8 Instructor: Kevin D. Donohue 2 Port Networks –Impedance/Admittance, Transmission, and Hybird Parameters 2-Port Circuits   Network parameters characterize linear circuits that have both input and output terminals, in terms of linear equations that describe the voltage and current relationships at those terminals. This model provides critical information for understanding the effects of connecting circuits, loads, and sources together at the input and output terminals of a twoport circuit. A similar model was used when dealing with oneport circuits. Review example: Thévenin and Norton Equivalent Circuits: 100  10 i1 a i1 10 V 50  100  b Show that Voc=8 V, Isc = 0.08 A, and Rth = 100 2-Port Circuits: Now take away the source from the previous example: 100  10 ia ia 50     100  Why wouldn't it make sense to talk about a Thévenin or Norton equivalent circuit in this case? The Thévenin and Norton models must be extended to describe circuit behavior at two ports. Label the terminal voltage and currents as v1, i1, v2, and i2 and develop a mathematical relationship to show their dependencies. Inverse Transmission -Parameter Model: If the circuit is linear, then a general linear relationship between the terminal voltages and currents can be expressed as: v2  av1  bi1  V2 i2  cv1  di1  I 2   Geometrically each equation forms a planar surface over the v1-i1 plane, therefore, only three non-colinear points on the surface are necessary to uniquely determine a, b, c, d, V2, and I2. So if the circuit response is known for three different values of the v1-i1 pairs, six equations with six unknowns can be generated and solved. This problem can be simplified by strategically setting v1 and i1 to zero in order to isolate unknown parameters and simplify the resulting equations. In general, if no independent sources exist in the circuit, then V2 and I2 will be 0. This will be the case for the problems considered in this unit. Example Determine the inverse transmission parameter model for the given circuit. 100  10 ia i1 + v1 - ia 50  100  i2 + v2 - Show that a =18/5, b= 100, c = 7/250 Siemens, d= 1. Summary Formula for Inverse Transmission Parameters:  If all independent sources are deactivated, set i1 = 0 to find: a  v2 v1 c i1  0 i2 v1 i1  0 If all independent sources are deactivated, set v1 = 0 to find: b v2 i1 d  v1  0 i2 i1 v1  0 Equivalent Circuit for Inverse Transmission Parameter Model: If inverse transmission parameters are known, then the following circuit can be used as an equivalent circuit: i1 + - + v1 - i2 1 i2 c + - d c + - av1  bi1 + v2 - This circuit is helpful when implementing in SPICE without knowledge or details of circuit from which parameters were derived. SPICE Solutions for Two-Port Parameters: By strategically selecting the constraints on port variables, the two-port parameters are the ratios of other port variables. Therefore:    Port variables can be constrained by attaching a zero-valued voltage or current source. The other port can be excited by a unity-valued source (or some other convenient value). Place meters at remaining ports to obtain values for evaluating ratios. The two-port parameter can be found from values determined through SPICE. Example: Determine the SPICE commands to find the abcd parameters for the circuit below. 100  10 ia i1 + v1 - ia 50  100  i2 + v2 - SPICE Solutions for Two-Port Parameters: 1) Consider setting v1=0, then v i b 2 d  2 i1 i1 2) Excite the circuit with i2=1 then b v2 100  i1 1 d  i2 1  1 i1 1 3) Use SPICE to compute v2 and i1 to solve for b and d. VAm1 H1 R2 -1000.00m 100 0 V1 R1 50 VAma 16.67n R3 100 1 IVm2 100.00 I2 SPICE Solutions for Two-Port Parameters: 4) Consider setting i1=0, then v2 a v1 5) i2 v1 Excite the circuit with v2=1, then a 6) c 1 1   3.6 v1 0.2778 c i2 .00778   28m v1 0.2778 Use SPICE compute v1 and i2 to solve for a and c. H1 R2 VAm2 7.78m 100 0 I1 IVm1 277.78m R1 50 VAma 5.56m R3 100 1 V2 Transmission -Parameter Model: Transmission parameters are related to the inverse transmission parameters by reversing the independent and dependent variables: Transmission Parameters v2  av1  bi1 i2  cv1  di1 v2  a b   v1   i    c d   i   1  2  Inverse Transmission Parameters 1 a b  v2   v1   c d   i    i     2   1  A B   v2  v1  C D   i    i    2   1  v1  Av2  Bi 2 i1  Cv2  Di2 Impedance/Admittance-Parameter Model: Impedance Parameters v1  z11i1  z12i2 v2  z21i1  z22i2  v1   z11 v    z  2   21 z12   i1  z22  i2  Admittance Parameters 1  z11 z12   v1   i1    z     21 z 22  v2  i2   y11 y12   v1   i1    y     21 y22  v2  i2  i1  y11v1  y12v2 i2  y21v1  y22v2 Hybrid (h)/Inverse Hybrid (g)-Parameter Model: Hybrid Parameters v1  h11i1  h12v2 i2  h21i1  h22v2 v1   h11 h12   i1   i   h     2   21 h22  v2  Inverse Hybrid Parameters 1  h11 h12  v1   i1       h  21 h22  i2  v2   g11 g12  v1   i1       g  21 g 22   i2  v2  i1  g11v1  g12i2 v2  g 21v1  g 22i2 Relationship Between 2 Sets of Port Parameters: Since a single set of network parameters characterize the linear circuits completely at the input and output terminals, it is possible to derive other network parameters from this set. Example: Consider the z and y parameter characterization of a given circuit with no independent sources: v   z   v   z 1 2 z  i    z  i  11 12 21 i   y   i   y 1 22 2 Show that: z   z 11 21 z  y  z   y 12 22 11 21 y   y  1 12 1 11 2 21 y  y y  y y  y   y y  y y 11 21 y  z  y   z 11 12 22 11 21 12 22 1 22 2 22 21 12 21 22 z   z  12 22 11 y   y y  v    y  v  1 22 21 12 z  z z  z z  z   z z  z z 22 11 22 21 12 21 11 22 21 12 y  y y y y   y  y y  y y  12 11 22 21 12 21 12 11 11 22 z  z z z z   z  z z  z z  12 11 22 21 12 21 12 11 11 22 Relationship Between 2 Sets of Port Parameters: Example: Consider the abcd and h parameter characterization of a given circuit with no independent sources: v   h    i  h v2  a b   v1   i    c d   i   1  2  1 11 2 21 h  i  h  v 12 1 22 2    Show that:  h11 h  21  b h12   a  h22   bc  ad  a 1 a c  a  1    h11       a b    h12  h  12    c d       h22    h  h22h11     21  h h 12     12  Terminal Currents and Voltages from Port Parameters: Once the port parameters are known, no other information from the circuit is required to determine the behavior of the currents and voltages at the terminals. Example: Given the z-parameter representation of a circuit, determine the resulting terminal voltages and currents when a practical source with internal resistance Rs and voltage Vs is connected to the input (terminal 1) and a load RL is connected to the output (terminal 2): v   z   v   z 1 11 2 21 z  i    z  i  12 22 Show that: z 11 L z s 12 RV  v  R R  R 21 L s 1 L s z 22 L R L  R R z R  RV   R R L 22 R R s R L z L s L 22 s 2 L s z R 22 s R v  R R  R  z R z R  12 L L s s + v2 - + v1 - Vs 2 i2 i1 Rs 1 s z 22 R L   z 11 - RL RV  L s z R V  z R  21 L 12 R R L s s s z R 22 s Combinations of Two-Port Networks: Consider circuits A and B described by their abcdparameters (assume independent sources zero). i1a - + v1a - A + v2a - i2a i1b - - i2b + v1b - B + v2b - - If A and B are connected in series, show that the abcd parameters for the new two-port (from v1a to v2b) is given by: v2b  ab  i   c  2b   b bb  aa db   ca ba   v1a   ab aa  bb ca     d a   i1a  cb aa  db ca abba  bb d a   v1a  cbba  db d a   i1a  Combinations of Two-Port Networks: Consider circuits A and B described by their y-parameters (assume independent sources zero). i1a i1 + - v1 + v1a - A + v2a - - - - i1b - i2a + v1b - B + v2b - i2b i2 + v2- - If A and B are connected in parallel, show that the yparameters for the new two-port (from v1a to v2b) is given by:  i1    y11b i     y  2    21b y12b   y11a   y22b   y21a y12a    v1    y11a  y11b       y22a   v2   y21a  y21b   y12a  y12b   v1  y22a  y22b  v2