* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Proof of the Angle Sum Property of Triangles
Perspective (graphical) wikipedia , lookup
Multilateration wikipedia , lookup
History of trigonometry wikipedia , lookup
Integer triangle wikipedia , lookup
Rational trigonometry wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Trigonometric functions wikipedia , lookup
Line (geometry) wikipedia , lookup
ProofoftheAngleSumPropertyofTriangles.
Thefollowinggivesaprooftheanglesumpropertyoftriangles,alongwiththeproofsofthe
theoremsusedintermediately.Someofthesehavebeentakenbacktoaxioms,postulatesand
definitionsandafewhavebeenleftassuggestedexercises.
1.Toprove:Sumoftheanglesofatriangleis2rightangles.
SideBCisproducedtoD.(Euclid’s2ndPostulate)
(1.1)
Givenalineandapointnotonit,thereexistsalineparalleltothegivenlinethroughthegiven
point. (1.2)
Given(1.2)
ThereexistsastraightlineCEparalleltoAB.
(1.3)
ACisastraightlinethatfallsonCEandAB.
(1.4)
Astraightlinefallingonparallelstraightlinesmakesthealternateanglesequaltooneanother
(1.5)
Given1.3,1.4and1.5,
<ACE=<BAC BDisastraightlinethatfallsonCEandAB.
(1.6)
(1.7)
Astraightlinefallingonparallelstraightlinesmakesapairofcorrespondinganglesequal.
(1.8)
(1.9)
<ABC+<ACB+<<BCA=<ECD+<ACE+<BCA (1.10)
Given1.1,<ECD+<ACE+<BCAistworightangles.
(1.11)
Given1.10and1.11,thesumoftheanglesofatriangleis2rightangles.
(1.12)
Given1.3,1.7and1.8
<ECD=<ABC
Given1.6and1.9,
Thesumoftheanglesinthetriangle=
NotethatthisproofappliestoANYtriangle,notjustthesampleoftrianglesthatwehappentohave
measured.Thisistheessenceofamathematicalproof.
InthisStatementsinbold1.2,1.5,1.8and1.11needtobeproved.Startingwith1.5.
2(1.5).ToProve:Astraightlinefallingonparallelstraightlinesmakesthe
alternateanglesequaltooneanother.
LetABandCDbeapairofparallellines,andFisastraightlinethatfallsonthem.
(2.1)
<AGHand<GHDareapairofalternateangles. (2.2)
Contrarytowhatwewishtoprove,Let<AGHnotequalto<GHD.
(2.3)
Let<GHDbethegreaterofthetwo.
(2.4)
Add<CHGtoboth.
(2.5)
(2.6)
Given2.4and2.5
<GHD+<CHGisgreaterthan<AGH+<CHG
Ifastraightlinestandsonastraightline,thenitmakeseithertworightanglesorangleswhose
sumequalstworightangles. (2.7)
<GHD+<CHGis2rightangles. Given2.6and2.8,<AGH+<CHGislessthan2rightangles
(2.8)
(2.9)
Ifastraightlinefallingontwostraightlinesmakestheinterioranglesonthesamesidelessthan
tworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhichare
theangleslessthanthetworightangles.
(2.10)
Given2.9and2.10
LinesABandCDmeetonthesideofAandC.
(2.11)
Thiscontradicts1.Thereforeassumption3isnottrue. Itfollowsfrom2.11that<AGHISequalto<GHD
HenceProved. (2.12)
Here2.7needstobeproved.2.10isthefifthpostulate.
3(1.8)ToProve:Astraightlinefallingonparallelstraightlinesmakesthe
correspondinganglesequaltooneanother.
LetABandCDbeapairofparallellines,andFisastraightlinethatfallsonthem.
(3.1)
<EGBand<GHDareapairofcorrespondingangles.
(3.2)
Whenapairoflinesintersect,apairofverticallyoppositeanglesarecongruent.
(3.3)
Given3.1and3.3,<AGH=<EGB
(3.4)
Astraightlinefallingonparallelstraightlinesmakesthealternateanglesequaltooneanother.(3.5)
Given3.5,<AGH=<GHD
(3.6)
(3.7)
Given3.4and3.6,
<EGB=<GHD Henceproved.
Statement3.5nowisanalreadyprovedtheorem,whichcanbeused.Statement3.3needstobe
proved.
4(1.2)ToProve:Givenalineandapointnotonit,thereexistsalineparallelto
thegivenlinethroughthegivenpoint.
BCisalineandAisapointthatisnotonit.
(4.1)
TakeapointDonBCandjoinAD.
(4.2)
Construct<DAEsuchthatitisequalto<ADC. (4.3)
{Thatthisispossiblecanbeproved–Euclidproposition23}
ExtendEAtoEF.{2ndPostulate} (4.4)
Ifastraightlinesfallsonapairoflinessuchthatapairofalternateinterioranglesarecongruent,
thenthepairoflinesareparallel.
(4.5)
Given4.2,4.3,4.4and4.5,
EFisparalleltoBC.
Henceproved.
Statement4.5,whichistheconverseofTheorem2provedaboveneedstobeproved.
Weproved1.2,1.5and1.8ofproof1above.Intheprocessweseethatwehaveusedafewmore
unprovedresults.
Wewillprove2ofthese–
Whenapairoflinesintersect,apairofverticallyoppositeanglesarecongruent.
Ifastraightlinesfallsonapairoflinessuchthatapairofalternateinterioranglesarecongruent,
thenthepairoflinesareparallel.
5(3.3)ToProve:Whenapairoflinesintersect,apairofverticallyopposite
anglesarecongruent.
Ifastraightlinestandsonastraightline,thenitmakeseithertworightanglesorangleswhose
sumequalstworightangles. (5.1)
AEisastraightlinethatstandsonCD. (5.2)
Given(5.1)and(5.2)
<AEC+<AED=2rightangles. (5.3)
Similarly,CEstandsonAB.
(5.4)
(5.5)
Given(5.1)and(5.4)
<AEC+<CEB=2rightangles
Given(5.3)and(5.5)
<AED=<CEB
Similarlyitcanbeshownthat<AEC=<DEB
(5.6)
(5.7)
HenceProved.
6.(4.5)ToProve:Ifastraightlinesfallsonapairoflinessuchthatapairof
alternateinterioranglesarecongruent,thenthepairoflinesareparallel.
ABandCDareapairoflinesandEFfallsonthemsuchthat<BEF=<CFE.
(6.1)
(6.2)
WeneedtoprovethatABisparalleltoCD
Contrarytowhatweneedtoprove,assume,LetABnotparalleltoCD. If(6.2)istrue,ABandCDmeetwhenextended.LetthemmeetonthesideofBandDatGsay.(6.3’)
E,F,Gformtheverticesofatriangle.
(6.3)
(6.4)
Given6.1,
<AEFanexteriorangleofatriangleCFE=<FEGaninterioroppositeangle.
But,Inanytriangle,ifoneofthesidesisproduced,thentheexteriorangleisgreaterthaneitherof
theinteriorandoppositeangles.”
(6.5)
(6.4)contradicts(6.5)
Thereforeassumption6.2cannotbetrue.
ThereforeADisparalleltoCD.
Henceproved.
Afewquestions
1) Inproof6,wehaveyetanotherunprovedresultnamely-“Inanytriangle,ifoneofthe
sidesisproduced,thentheexteriorangleisgreaterthaneitheroftheinteriorand
oppositeangles.”
Isthefollowinganacceptableproofforthisresult?Whyorwhynot?
Proof:
Thesumoftheanglesofatriangleistworightangles. (1)
Given1,<ABC+<BCA+<CAB=2rightangles. (2)
Ifastraightlinestandsonastraightline,thenitmakeseithertworightanglesorangles
whosesumequalstworightangles.
(3)
Given2,<BCA+<ACD=2rightangles. (4)
(5)
(6)
Given2and4
<ABC+<CAB=<ACD
<ABCand<CABarebothpositivequantitiesgivenABCisatriangle
Given5and6,<ACDisgreaterthanboth<ABCand<CAB.Henceproved.
2) Furtherexploration:
Youcouldtrytoprovethefollowingstatementswhichhavebeenusedintheproof.
Ifastraightlinestandsonastraightline,thenitmakeseithertworightanglesorangles
whosesumequalstworightangles.”
Itispossibletoconstructanangleequaltoagivenangleonagivenstraightlineandapoint
onit.
Inanytriangle,ifoneofthesidesisproduced,thentheexteriorangleisgreaterthaneither
oftheinteriorandoppositeangles.”
Intheprocess,youmayuseafewmoretheoremswhichrequiretobeprovedoryoumay
useonlyaxioms,definitionsandpostulatesthatareacceptedastrue.