Download Highest value - Lowest value Number of classes x x n = 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
SUMMARY OF CHAPTER 1
1.1 DESCRIPTIVE STATISTICS
1.1.1 Frequency Table
1.
Finding the number of classes
a)
Sturges Rule, 1  3.3logc
b) n
2. Class Width
Highest value - Lowest value
Number of classes
1.1.2 Measures of Central Tendency
Ungrouped Data:Mean
x
x
n
Median
n 1
- for n is odd
2
n
- for n is even
2
Mode
Highest frequency in data set
Grouped data:Mean
SYAFAWATI AB. SAAD
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
x
 fx
f
Median
 f

 Fi 1 

2
x  Lc

fj




L  Lower class boundary of median class
c  the size of median class interval
Fj 1  the sum of frequencies of all classes lower than
the median class
f j  the frequency of median class
Mode
 1 
xˆ  L  c 

 1   2 
L  lower class boundary of mode class
c  the size of mode class interval
1  difference between the modal class frequency and before it
 2  difference between the modal class frequency and after it
1.1.3 Measures of Dispersion
Range = Largest value – Smallest value
Ungrouped data
s2 
 
2
 (x  x )
Grouped data
2
n 1
 ( x  x )2
n
(for sample)
(for population)
s2 
2 
 fx
2
 fx

n 1
 fx
2
2
n
 fx

n
n
(for sample)
2
(for population)
1.2 Probability Distributions
SYAFAWATI AB. SAAD
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
1.2.1 Discrete Probability Distribution
1.2.1.1 Binomial Distribution
P ( X  x )  nC x p x q n  x
Mean  E ( X )  np
Variance  Var ( X )  npq
n relatively large, Table Binomial used (P( X  k )
follow the guidelines below:
i)P( X  x)  P( X  x)  P( X  x  1)
ii)P( X  x)  P( X  x  1)
iii)P( X  x)  1  P( X  x)
iv)P( X  x)  1  P( X  x  1)
v)P( x1  X  x2 )  P( X  x2  1)  P( X  x1 )
1.2.1.2 Poisson Distribution
x
ee 
x
P
P(( X
X
 xx)) 

for x  0,1, 2,3,...
xx!
E( X )  
Var ( X )  
1.2.1.3 Poisson Approximation of Binomial Probabilities
Rule : n  30, np  5, nq  5
X ~ B(n, p)  X ~ Po (np)
1.3.1 Continuous Probability Distribution
1.3.1.1 Normal Distribution
SYAFAWATI AB. SAAD
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
X ~ N ( , 2 )
E( X )  
Var ( X )   2
Z
X 
1.3.1.2

Normal Approximation
c .c
a) P( X  x) 
 P( x  0.5  X  x  0.5)
c .c
b) P( X  x) 
 P( X  x  0.5)
c .c
c) P( X  x) 
 P( X  x  0.5)
c .c
d) P( X  x) 
 P( X  x  0.5)
c .c
e) P( X  x) 
 P( X  x  0.5)
c.c  continuous correction factor
1.3.1.3
Normal Approximation of Binomial Distribution
Rule : n  30, np  5, nq  5
X ~ B(n, p)  X ~ N (np, npq)
1.3.1.4 Normal Approximation of Poisson Distribution
Rule :   10
X ~ Po ( )  X ~ N ( ,  )
1.4 Sampling Distribution
1.4.1 Sampling Distribution of One Sample Mean
SYAFAWATI AB. SAAD
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
x  

x 
Z
n
X 

n
If n  30, X ~ N (  ,
2
n
)
If n  30, variance is known X ~ N (  ,
2
)
n
If n  30, variance is unknown, t distribution
with n-1 degree
T
X 
s2
n
~ tn 1
1.4.2 Sampling Distribution for Two Sample Mean
X 1  X 2 ~ N ( 1  2 ,
 12
n1

 22
n2
)
1.4.3 Sampling Distribution of Sample Proportion
X
x
and pˆ 
N
n
N  total number of elements in population
X  number of elements in population
n  total number of elements in sample
p
x  number of elements in the sample
pˆ ~ N ( p,
pq
)
n
 pˆ  p,  pˆ 
pq
n
1.4.4 Sampling Distribution of Two Sample Proportion
SYAFAWATI AB. SAAD
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013
pˆ1 ~ N ( p1 ,
p1 (1  p1 )
)
n1
pˆ 2 ~ N ( p2 ,
p2 (1  p2 )
)
n2
pˆ1  pˆ 2 ~ N ( p1  p2 ,
p1 (1  p1 ) p2 (1  p2 )

)
n1
n2
SYAFAWATI AB. SAAD
Related documents