Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 SUMMARY OF CHAPTER 1 1.1 DESCRIPTIVE STATISTICS 1.1.1 Frequency Table 1. Finding the number of classes a) Sturges Rule, 1 3.3logc b) n 2. Class Width Highest value - Lowest value Number of classes 1.1.2 Measures of Central Tendency Ungrouped Data:Mean x x n Median n 1 - for n is odd 2 n - for n is even 2 Mode Highest frequency in data set Grouped data:Mean SYAFAWATI AB. SAAD ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 x fx f Median f Fi 1 2 x Lc fj L Lower class boundary of median class c the size of median class interval Fj 1 the sum of frequencies of all classes lower than the median class f j the frequency of median class Mode 1 xˆ L c 1 2 L lower class boundary of mode class c the size of mode class interval 1 difference between the modal class frequency and before it 2 difference between the modal class frequency and after it 1.1.3 Measures of Dispersion Range = Largest value – Smallest value Ungrouped data s2 2 (x x ) Grouped data 2 n 1 ( x x )2 n (for sample) (for population) s2 2 fx 2 fx n 1 fx 2 2 n fx n n (for sample) 2 (for population) 1.2 Probability Distributions SYAFAWATI AB. SAAD ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 1.2.1 Discrete Probability Distribution 1.2.1.1 Binomial Distribution P ( X x ) nC x p x q n x Mean E ( X ) np Variance Var ( X ) npq n relatively large, Table Binomial used (P( X k ) follow the guidelines below: i)P( X x) P( X x) P( X x 1) ii)P( X x) P( X x 1) iii)P( X x) 1 P( X x) iv)P( X x) 1 P( X x 1) v)P( x1 X x2 ) P( X x2 1) P( X x1 ) 1.2.1.2 Poisson Distribution x ee x P P(( X X xx)) for x 0,1, 2,3,... xx! E( X ) Var ( X ) 1.2.1.3 Poisson Approximation of Binomial Probabilities Rule : n 30, np 5, nq 5 X ~ B(n, p) X ~ Po (np) 1.3.1 Continuous Probability Distribution 1.3.1.1 Normal Distribution SYAFAWATI AB. SAAD ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 X ~ N ( , 2 ) E( X ) Var ( X ) 2 Z X 1.3.1.2 Normal Approximation c .c a) P( X x) P( x 0.5 X x 0.5) c .c b) P( X x) P( X x 0.5) c .c c) P( X x) P( X x 0.5) c .c d) P( X x) P( X x 0.5) c .c e) P( X x) P( X x 0.5) c.c continuous correction factor 1.3.1.3 Normal Approximation of Binomial Distribution Rule : n 30, np 5, nq 5 X ~ B(n, p) X ~ N (np, npq) 1.3.1.4 Normal Approximation of Poisson Distribution Rule : 10 X ~ Po ( ) X ~ N ( , ) 1.4 Sampling Distribution 1.4.1 Sampling Distribution of One Sample Mean SYAFAWATI AB. SAAD ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 x x Z n X n If n 30, X ~ N ( , 2 n ) If n 30, variance is known X ~ N ( , 2 ) n If n 30, variance is unknown, t distribution with n-1 degree T X s2 n ~ tn 1 1.4.2 Sampling Distribution for Two Sample Mean X 1 X 2 ~ N ( 1 2 , 12 n1 22 n2 ) 1.4.3 Sampling Distribution of Sample Proportion X x and pˆ N n N total number of elements in population X number of elements in population n total number of elements in sample p x number of elements in the sample pˆ ~ N ( p, pq ) n pˆ p, pˆ pq n 1.4.4 Sampling Distribution of Two Sample Proportion SYAFAWATI AB. SAAD ENGINEERING STATISTICS EQT 271 SEM 2 2012/2013 pˆ1 ~ N ( p1 , p1 (1 p1 ) ) n1 pˆ 2 ~ N ( p2 , p2 (1 p2 ) ) n2 pˆ1 pˆ 2 ~ N ( p1 p2 , p1 (1 p1 ) p2 (1 p2 ) ) n1 n2 SYAFAWATI AB. SAAD