Download Genetic Algorithms and Walsh Functions

Document related concepts
no text concepts found
Transcript

Complex Systems
“GA and Walsh Functions Part-I A
Gentle introduction”,
› David E. Goldberg,
› 1989, pages 129-152.
› Dept of Engineering Mechanics, Univ of
Alabama, USA.
› chapter 3:

A Primer on Bethke’s Walsh schema
transform
› William A. Green
› CSD Univ of New-Orleans, USA.
2
Part I: An algebraic introduction. ←
 Part II: Overview of the Walsh Transform
 Part III: Walsh Analysis of Fitness
 Part IV: Walsh Coefficients
 Part V: Sumation

3
Vector spaces
 The v.s. of functions
 Basis of a vector space
 The Inner product of a v.s
 Orthonormal Basis.

4





Given the field F.
A vector space V is a group of elements called vectors.
With two operations:
› Vector Addition 𝑉 × 𝑉 → 𝑉 (for every 𝑣, 𝑤 ∈ 𝑉 𝑣 + 𝑤 ∈ 𝑉)
› scalar multiplication 𝐹 × 𝑉 → 𝑉 (for every 𝑣 ∈ 𝑉 𝛼 ∈ 𝐹 𝛼𝑣 ∈ 𝑉
we are given 0 ∈ 𝑉 ∀𝑣 ∈ 𝑉 0 + 𝑣 = 𝑣 called the Zero vector
The following conditions are met:
› Vector addition is commutative and associative
› For all 𝑣 ∈ 𝑉 there is −𝑣 ∈ 𝑉 so that 𝑣 + −𝑣 = 0
› For all 𝑣, 𝑤 ∈ 𝑉 𝛼, 𝛽 ∈ 𝐹

𝛼𝛽 𝑣 = 𝛼 𝛽𝑣
 𝛼 + 𝛽 𝑣 = 𝛼𝑣 + 𝛽𝑣
 𝛼 𝑣 + 𝑤 = 𝛼𝑣 + 𝛼𝑤
 1𝑣 = 𝑣
5
•
•
•
•
•
Vector Addition
for every 𝑣, 𝑤 ∈ 𝑉 𝑣 + 𝑤 ∈ 𝑉
Zero vector : 0 ∈ 𝑉 ∀𝑣 ∈ 𝑉 0 + 𝑣
=𝑣
Vector addition is commutative
Vector addition is associative
For all 𝑣 ∈ 𝑉 there is −𝑣 ∈ 𝑉
so that 𝑣 + −𝑣 = 0
Scalar Multiplication
•
•
for every 𝑣 ∈ 𝑉 𝛼 ∈ 𝐹 𝛼𝑣 ∈ 𝑉
For all 𝑣, 𝑤 ∈ 𝑉 𝛼, 𝛽 ∈ 𝐹
•
𝛼𝛽 𝑣 = 𝛼 𝛽𝑣
•
𝛼 + 𝛽 𝑣 = 𝛼𝑣 + 𝛽𝑣
• 𝛼 𝑣 + 𝑤 = 𝛼𝑣 + 𝛼𝑤
• 1𝑣 = 𝑣
6


V is called Finitely Generated Vector space if:
› there exists a finite set 𝑆 ⊆ 𝑉
› 𝑉 = 𝑠𝑝𝑆 = 𝑣 ∈ 𝑉 𝑣 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆
If 𝑉 𝐹is finitely generated vector space
› 𝐵 ⊆ 𝑉 is an ordered set
› B is a Basis of V ⟺ :
 B spans V
 B is Linearly Independent.
› 𝐵 = 𝑛 is called the dimension of V and every basis
of V will have exactly n vectors.

unique representation : for every 𝑣 ∈ 𝑉 there is
a unique representation as a linear combination of
vectors in B.
7
𝑏1
𝑏2
𝑏3
0𝑉
𝑣
𝜆2
𝜆1
…
𝜆3
…
𝜆𝑛
𝑏𝑛
𝐵 = 𝑏1 , 𝑏2 , 𝑏3 , … , 𝑏𝑛 is a basis for V ⇔
1. 𝐵 spans 𝑉
For every 𝑣 ∈ 𝑉, 𝑣 = 𝜆1 𝑏1 + 𝜆2 𝑏2 + 𝜆3 𝑏3 + ⋯ + 𝜆𝑛 𝑏𝑛 𝜆𝑖 ∈ 𝐹
2. 𝐵 is linearly independent:
𝜆1 𝑏1 + 𝜆2 𝑏2 + 𝜆3 𝑏3 + ⋯ + 𝜆𝑛 𝑏𝑛 = 0𝑉 ⟹ 𝜆1 = 𝜆2 = 𝜆3 = ⋯ = 𝜆𝑛 = 0𝐹
8
Field R.
 X is the set of bit strings of length 𝑙

For 𝑙 = 3

𝑋 = 000,001,010, … , 111
F(X) are all the functions from X into R



𝐹(𝑋): 𝑋 → 𝑅
With the following point-wise operations:
Vector addition: for all 𝑓, 𝑔 ∈ 𝐹(𝑋) ∀𝑥 ∈ 𝑋 (𝑓
9
𝜆2
0𝐹(𝑥)
𝜆1
𝑓1
000
001
010
011
⋮
111
𝑓
…
…
𝜆𝑛
𝑓2
𝑓3
𝜆3
𝑅 : the
field of
reals
𝑓𝑛
With the following point-wise operations:
Vector addition: for all 𝑓, 𝑔 ∈ 𝐹(𝑋) ∀𝑥 ∈ 𝑋 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔 𝑥
Scalar multiplication: for all 𝑓 ∈ 𝐹 𝑋 𝛼 ∈ 𝑅 ∀𝑥 ∈ 𝑋 𝛼𝑓 𝑥 = 𝛼𝑓 𝑥
10

We shall look at the following set of functions:
› 𝐵 = 𝛿𝑥 𝑦 𝑥 ∈ 𝑋
› 𝛿𝑥 𝑦 =

𝑥=𝑦
𝑒𝑙𝑠𝑒
B is a basis for F(X)
›
›
›
›
𝐹 𝑋 = 𝑠𝑝𝐵
Proof: 𝑓(𝑥) ∈ 𝐹 𝑋 than 𝑓 𝑦 = 𝑥∈𝑋 𝜆𝑓(𝑥) 𝛿𝑥 𝑦 𝜆𝑓(𝑥) = 𝑓(𝑥)
B is linearly independent
Proof: 𝑥∈𝑋 𝜆𝑥 𝛿𝑥 𝑦 = 0 is true for each w ∈ 𝑋
 0=

1
0
𝑥∈𝑋 𝜆𝑥
𝛿𝑥 𝑤 = 𝜆𝑤 𝛿𝑤 𝑤 = 𝜆𝑤
Therefor the dim 𝐹 𝑥
= 𝑋 = 2𝑙
11
𝒙
𝑅 : the
field of
reals
000
001
010
011
⋮
111
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 = 𝑥1 ⋁𝑥2 ⋀ 𝑥2 ⋁𝑥3
𝒙𝟑 𝒙𝟐 𝒙𝟏 𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
0
000
1
1
001
2
2
010
2
3
011
2
4
100
0
5
101
1
6
110
1
7
111
2
= 𝛿0 𝑥 + 2𝛿1 𝑥 + 2𝛿2 𝑥 + 2𝛿3 𝑥 + 𝛿5 𝑥 + 𝛿6 𝑥 + 2𝛿7 𝑥
GA looks at 𝑋 a group of 𝑙 𝑏𝑖𝑡 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 and evaluates it by a fitness
func.𝑓 𝑥 ∈ 𝐹 X : X → 𝑅
 𝑓 𝑥 is a linear combination of the basis of F(X).


𝑓 𝑗 =
2𝑙 −1
𝑖=0 𝑓𝑖
𝛿𝑖 𝑗 ,
𝑓𝑖 ∈ 𝑅 , 𝑓𝑖 = 𝑓(𝑖)
(𝑖, 𝑗 are treated and as integer or string)

𝐷𝑖𝑚 𝐹 𝑋
= 2𝑙
12

is a function of two arguments over the vector space into the
field.
›

:𝑉 × 𝑉 → 𝑅
The inner product function must satisfy the following
properties:
linearity 𝛼𝑣 + 𝛽𝑤 𝑢 = 𝛼 𝑣 𝑢 + 𝛽 𝑤 𝑢
› Symetric 𝑣 𝑢 = 𝑢 𝑣
›
› Positive definite 𝑢 𝑢 ≥ 0, 𝑢 𝑢 = 0 ⟺ 𝑢 = 0
13

𝑓𝑔 =
1
𝑋
𝑥∈𝑋 𝑓
𝑥 𝑔(𝑥) =
1
2𝑙
𝑥∈𝑋 𝑓
𝑥 𝑔(𝑥)
14

Set 𝑆 = 𝑓1 , … , 𝑓𝑘 is said to be
orthonormal if:
0 𝑖≠𝑗
› 𝑓𝑖 𝑓𝑗 =
1 𝑖=𝑗

= 2𝑙

dim 𝐹 𝑋

Any orthonormal group of 2𝑙 vectors in
𝐹(𝑋) is a basis of 𝐹(𝑋)
15
Vector spaces
 The v.s. of functions
 Basis of a vector space
 The Inner product of a v.s
 Orthonormal Basis.

16
Part I: An algebraic introduction.
 Part II: Overview the Walsh Transform ←
 Part III: Walsh Analysis of Fitness
 Part IV: Walsh Coefficients
 Part V: Sumation

17
𝒙
000
001
010
011
⋮
111

𝑅 : the
field of
reals
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 = 𝑥1 ⋁𝑥2 ⋀ 𝑥2 ⋁𝑥3
𝒙𝟑 𝒙𝟐 𝒙𝟏 𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
0
000
1
1
001
2
2
010
2
3
011
2
4
100
0
5
101
1
6
110
1
7
111
2
GA receives a l-bit string and decides on its fitness
with a fitness function.
› 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 : 𝑋 → 𝑅
› GA is looking for maximum fitness

In max-sat problems. Fitness would be number of
satisfied clause
› 𝑓𝑖𝑡𝑛𝑒𝑠𝑠_𝑜𝑓_max _𝑠𝑎𝑡(𝑥): 𝑋 → 𝑅
18

We shall define a special set of functions:
› W= 𝜓1 , … , 𝜓2𝑙
› 𝜓𝑖 𝑥 : 𝑋 → 𝑅

W is a set of 2𝑙 orthonormal vectors

W= 𝜓1 , … , 𝜓2𝑙 are called Walsh
functions
19

The function 𝜓𝑗 (𝑥) masks 𝑥 with the bit
representation of 𝑗 and returnes a value of 1 or +1. depending on the outcome of the
bit−rep−of−j ⋀ bit−rep−of−x
−1
 𝜓𝑗 𝑥 =
1
𝑗⋀𝑥 𝑖𝑠 𝑜𝑑𝑑
𝑗⋀𝑥 𝑖𝑠 𝑒𝑣𝑒𝑛
𝑥 = 111
 𝜓5 111 = ⋀
2 is even ⇒ = 1
𝑗 = 101
𝑥 = 110
 𝜓5 110 = ⋀
1 is 𝑜𝑑𝑑 ⇒ = −1
𝑗 = 101
20

We shall define a linear function:
› 𝑦𝑖 = 𝑦𝑖 𝑥𝑖
1
= 1 − 2𝑥𝑖 =
−1
𝑥𝑖 = 0
𝑥𝑖 = 1
› 𝑦𝑖 is linear therefor
 1:1
 onto.
 ⇒ The inverse func is linear as well, 1:1 and
onto.
 𝑦𝑖 −1 𝑦𝑖 𝑥𝑖
1
2
= 𝑥𝑖 = (1 − 𝑦𝑖 )
21

𝑙
𝑗𝑖
(𝑦
(𝑥
))
𝑖
𝑖
𝑖=1
› 𝑗𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖 𝑏𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗
𝜓𝑗 𝑥 =
𝑦𝑖 (𝑥𝑖 ) =
1
−1
𝑥𝑖 = 0
𝑥𝑖 = 1
An example of Walsh func l=3
 𝜓1=001 𝑥 = (𝑦1 (𝑥1 )) 𝑗1 =1 (𝑦2 (𝑥2 )) 𝑗2 =0 (𝑦3 (𝑥3 )) 𝑗3 =0
 𝜓5=101 𝑥 = (𝑦1 (𝑥1 )) 𝑗1 =1 (𝑦2 (𝑥2 )) 𝑗2 =0 (𝑦3 (𝑥3 )) 𝑗3 =1

𝒋
𝒋𝟑 𝒋𝟐 𝒋𝟏
0
000
1
1
1
001
𝑦1 (𝑥1 )
𝑦1
2
010
𝑦2 (𝑥2 )
𝑦2
3
011
𝑦1 (𝑥1 )𝑦2 (𝑥2 )
𝑦1 𝑦2
4
100
𝑦3 (𝑥3 )
𝑦3
5
101
𝑦1 (𝑥1 )𝑦3 (𝑥3 )
𝑦1 𝑦3
6
110
𝑦2 (𝑥2 )𝑦3 (𝑥3 )
𝑦2 𝑦3
7
111
𝑦1 (𝑥1 )𝑦2 (𝑥2 )𝑦3 (𝑥3 )
𝑦1 𝑦2 𝑦22
3
𝜓𝑗 𝑥
𝜓𝑗 𝑥
𝐹 𝑋 : 𝑋 → 𝑅 is a vector space under 𝑅
 In this vs there is an inner product
function:


1
1
𝑓𝑔 =
𝑓 𝑥 𝑔(𝑥) = 𝑙
𝑓 𝑥 𝑔(𝑥)
𝑋
2
𝑥∈𝑋
𝑥∈𝑋
We want to show that 𝜓1 , … , 𝜓2𝑙 = 𝑊 ⊆ 𝐹(𝑋) is
orthonormal
0 𝑖≠𝑗
› 𝜓𝑖 (𝑥) 𝜓𝑗 (𝑥) =
1 𝑖=𝑗
23

Easy part: 𝜓𝑗 (𝑥) 𝜓𝑗 (𝑥) = 1
𝜓𝑗 (𝑥) 𝜓𝑗 (𝑥)
1
= 𝑙
2
1
= 𝑙
2
1
= 𝑙
2

𝑙
𝑗𝑖
𝑖=1(𝑦𝑖 (𝑥𝑖 ))
› 𝑗𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑖 𝑏𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗
𝜓𝑗 𝑥 =
𝑥∈𝑋
𝜓𝑗 𝑥 𝜓𝑗 𝑥
𝑥∈𝑋
𝜓𝑗 𝑥
2
1=1
𝑥∈𝑋
𝑦𝑖 (𝑥𝑖 ) =
1
−1
𝑥𝑖 = 0
𝑥𝑖 = 1
24
If 𝑗 ≠ 𝑘 they differ at some bit-possition 𝑖
 Meaninig :

› 𝜓𝑗 (𝑥) masks position 𝑖, and
› 𝜓𝑘 (𝑥) does not (or the other way arround)

Define a function
› 𝑐𝑖 𝑥 : 𝑋 → 𝑋
› returns same bit string 𝑥 with flipped position 𝑖
› 𝑐𝑖 𝑥 is 1:1 and onto
› Therefor invertible. 𝑥 = 𝑐𝑖 𝑐𝑖 𝑥
25
𝜓𝑗 (𝑥) 𝜓𝑘 (𝑥)
1
= 𝑙
𝜓𝑗 𝑥 𝜓𝑘 𝑥
2
𝑥∈𝑋
1
= 𝑙
2
1
= 𝑙
2
1
2𝑙
𝑥∈𝑋
𝑏𝑖𝑡−𝑖−𝑜𝑓 𝑥=0
𝑥∈𝑋
𝑏𝑖𝑡−𝑖−𝑜𝑓 𝑥=0
1
𝜓𝑗 𝑥 𝜓𝑘 𝑥 + 𝑙
2
1
𝜓𝑗 𝑥 𝜓𝑘 𝑥 + 𝑙
2
𝜓𝑗 𝑥 𝜓𝑘 𝑥
𝑥∈𝑋
𝑏𝑖𝑡−𝑖−𝑜𝑓 𝑥=1
𝜓𝑗 𝑐𝑖 𝑥
𝜓𝑘 𝑐𝑖 𝑥
𝑥∈𝑋
𝑏𝑖𝑡−𝑖−𝑜𝑓 𝑥=0
(𝜓𝑗 𝑥 𝜓𝑘 𝑥 + 𝜓𝑗 𝑐𝑖 𝑥 𝜓𝑘 𝑐𝑖 𝑥 ) = 0
𝑥∈𝑋
𝑏𝑖𝑡−𝑖−𝑜𝑓 𝑥=0
26
𝜆2
0𝐹(𝑥)
…
000
001
010
011
⋮
111

𝜓1
𝜓23
𝜆1
𝜓2
𝜓3
𝜆3
…
𝜆𝑛
𝑅 : the
field of
reals
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥)
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 = 𝑥1 ⋁𝑥2 ⋀ 𝑥2 ⋁𝑥3
𝑊 = 𝜓1 , … , 𝜓2𝑙 ⊆ 𝐹(𝑋) is orthonormal
0 𝑖≠𝑗
𝜓𝑗 (𝑥) 𝜓𝑗 (𝑥) =
1 𝑖=𝑗
27

W is a set of 2𝑙 orthonormal vectors in
F(x). ⇒ W is a basis of 𝐹 𝑥 : 𝑋 → 𝑅.
› Proof: 𝑊 = 2𝑙
› Linearity independence:
 𝜆1 𝜓1 ⋯ 𝜆2𝑙 𝜓2𝑙 = 0
 0 = 0 𝜓𝑗 (𝑥) =
 = 𝜆1 𝜓1 ⋯ 𝜆2𝑙 𝜓2𝑙 𝜓𝑗 (𝑥)
=𝜆1 𝜓1 𝜓𝑗 (𝑥) + ⋯ + 𝜆𝑗 𝜓𝑗 𝜓𝑗 𝑥
= 𝜆𝑗
+ ⋯ + 𝜆2𝑙 𝜓2𝑙 𝜓𝑗 𝑥
28
𝜆2
0𝐹(𝑥)
…
000
001
010
011
⋮
111

𝜓1
𝜓23
…
𝜆1
𝜓2
𝜆𝑛
𝑅 : the
field of
reals
𝜓3
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥)
𝜆3
𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑥 = 𝑥1 ⋁𝑥2 ⋀ 𝑥2 ⋁𝑥3 =
𝑤1 𝜓1 𝑥 + ⋯ + 𝑤23 𝜓23 (𝑥) =
𝑙
2 −1
𝑗=0
𝑤𝑗 𝜓𝑗 (𝑥)
Therefor every 𝑓(𝑥) ∈ 𝐹(𝑥)
› there are unique 𝑤1 , … , 𝑤2𝑙 ∈ 𝑅 that 𝑤1 𝜓1 ⋯ 𝑤2𝑙 𝜓2𝑙 = 𝑓 𝑥
› 𝑤𝑗 = 𝑓(𝑥) 𝜓𝑗 (𝑥) = 𝑤1 𝜓1 ⋯ 𝑤2𝑙 𝜓2𝑙 𝜓𝑗 (𝑥)
=𝑤1 𝜓1 𝜓𝑗 (𝑥) + ⋯ + 𝑤𝑗 𝜓𝑗 𝜓𝑗 𝑥 + ⋯ + 𝑤2𝑙 𝜓2𝑙 𝜓𝑗 (𝑥)

𝑊𝑎𝑙𝑠ℎ 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑓 𝑥 =
2𝑙 −1
𝑗=0 𝑤𝑗
𝜓𝑗 (𝑥)
29
Part I: An algebraic introduction.
 Part II: Overview of the Walsh Transform
 Part III: Walsh Analysis of Fitness ←
 Part IV: Walsh Coefficients
 Part V: Sumation

30
Hadamard
Martix
•
•
•
•
•
Before we go on…
A related term.
square martix
entries are either +1 or
−1
rows are mutually
ortogonal
geometric
interpretation: this
means that each pair
of rows represent two
perpendicular vectors
Combinatorical
interpretaion: it
means that each pair
of rows has matching
entries in exactly half
of their columns and
mismatched entries in
the remaining entries
31
32
Part I: An algebraic introduction.
 Part II: Overview of the Walsh Transform
 Part III: Walsh Analysis of Fitness ←
 Part IV: Walsh Coefficients
 Part V: Sumation

33
𝒙
Schema: Schema is a
similarity subset. A set of
strings with well defined
similarity.
 Example : 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑚𝑎 ∗ 1 ∗
= 010,011,110,111
 For a schema ℎ, its average

fitness: 𝑓
ℎ =
𝑥∈ℎ 𝑓(𝑥)
𝒙𝟑 𝒙𝟐 𝒙𝟏 𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
0
000
1
1
001
2
2
010
2
3
011
2
4
100
0
5
101
1
6
110
1
7
111
2
𝑓 ∗1∗ =
1
2+2+1+2
4
= 1.75
ℎ
34
𝒋
𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒋
Set of schema
0
∗∗∗
1
∗∗ 𝑓
2
∗𝑓∗
3
∗ 𝑓𝑓
4
𝑓 ∗∗
All schema
∗∗ 1,∗∗ 0,∗ 01,∗ 11,∗ 10,∗ 00,0 ∗ 0,0 ∗ 1,1 ∗ 0
1 ∗ 1, 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑓𝑖𝑥𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑎
∗ 1 ∗,∗ 0 ∗,∗ 01,∗ 11,∗ 10,∗ 00,00 ∗, 01 ∗, 10 ∗
11 ∗, 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑓𝑖𝑥𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑎
∗ 00,∗ 01,∗ 10,∗ 11,100,000,101,
110,011,111,001,010
1 ∗∗, 0 ∗∗, 0 ∗ 1,1 ∗ 1,1 ∗ 0,0 ∗ 0,00 ∗, 01 ∗, 10 ∗
11 ∗, 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑓𝑖𝑥𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑎
5
𝑓∗𝑓
6
𝑓𝑓 ∗
7
𝑓𝑓𝑓
0 ∗ 0,0 ∗ 1,1 ∗ 0,1 ∗ 1,100,000,101,
110,011,111,001,010
00 ∗, 01 ∗, 10 ∗, 11 ∗, 100,000,101,
110,011,111,001,010
All the fixed schema
35

For a schema ℎ, its average fitness:
𝑓 ℎ =
1
=
ℎ
1
=
ℎ

𝑥∈ℎ 𝑓(𝑥)
ℎ
2𝑙 −1
𝑥∈ℎ
2𝑙 −1
𝑗=0
𝑤𝑗 𝜓𝑗 (𝑥)
𝑗=0
𝑤𝑗
𝑥∈ℎ
Explanation 1:
1
=
ℎ
=
2𝑙 −1
𝑗=0
±ℎ
𝑤𝑗
0
𝜓𝑗 (𝑥)
𝜓𝟐
𝒑𝒂𝒓𝒕𝒏
2
∗𝟏∗
𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
𝑦2
∗𝑓∗
010
−1
𝑦2
∗𝑓∗
011
−1
𝑦2
∗𝑓∗
110
−1
𝑦2
∗𝑓∗
111
−1
𝜓𝟑
𝒑𝒂𝒓𝒕𝒏
3
∗𝟏∗
𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
𝑦2 𝑦1
∗ 𝑓𝑓
010
−1
𝑦2 𝑦1
∗ 𝑓𝑓
011
1
𝑦2 𝑦1
∗ 𝑓𝑓
110
−1
𝑦2 𝑦1
∗ 𝑓𝑓
111
1
± ℎ 𝑖𝑓 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
0
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑖𝑓 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑥∈ℎ 𝜓𝑗 (𝑥) =
36
𝑓 ℎ
1
=
ℎ
2𝑙 −1
𝑗=0
2𝑙 −1
=
𝑗=0
±ℎ
𝑤𝑗
0
±𝑤𝑗
0
𝑖𝑓 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑖𝑓 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
2𝑙 −1
=
𝑗=0
𝑤𝑗 𝑠𝑖𝑔𝑛(ℎ, 𝑗)
𝜓𝟐
𝒑𝒂𝒓𝒕𝒏 ∗ 𝟏 ∗
2
𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
𝑦2
∗𝑓∗
010
−1
𝑦2
∗𝑓∗
011
−1
𝑦2
∗𝑓∗
110
−1
𝑦2
∗𝑓∗
111
−1
𝜓𝟑
𝒑𝒂𝒓𝒕𝒏 ∗ 𝟏 ∗
3
𝑓𝒊𝒕𝒏𝒆𝒔𝒔(𝒙)
𝑦2 𝑦1
∗ 𝑓𝑓
010
−1
𝑦2 𝑦1
∗ 𝑓𝑓
011
1
𝑦2 𝑦1
∗ 𝑓𝑓
110
−1
𝑦2 𝑦1
∗ 𝑓𝑓
111
1
Explanation 2
0
ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
: 𝑠𝑖𝑔𝑛 ℎ, 𝑗 = 1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑖𝑛 ℎ⋀𝑗𝑖𝑠 𝑒𝑣𝑒𝑛
−1 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 1𝑠 𝑖𝑛 ℎ⋀𝑗𝑖𝑠 𝑜𝑑𝑑
37
𝒋
𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒋
1
∗∗ 𝑓
1
∗∗ 𝑓
Set of schema
∗∗ 1,∗∗ 0,∗ 01,∗ 11,∗ 10,∗ 00,0 ∗ 0,0 ∗ 1,1 ∗ 0
1 ∗ 1, 𝑎𝑛𝑑 𝑎𝑙𝑙 𝑓𝑖𝑥𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑎
𝑠𝑐ℎ𝑒𝑚𝑎 𝑛𝑜𝑡 𝑓𝑖𝑥𝑒𝑑 𝑎𝑠 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 1
∗ 1 ∗,∗ 0 ∗,∗ 01,∗ 11,∗ 10,∗ 00,00 ∗, 01 ∗, 10 ∗
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
exists 𝑖 ∶a fixed bit position in 𝑝𝑎𝑡𝑟𝑖𝑡𝑖𝑜𝑛 − 𝑗 (𝑓) but ℎ is not fixed.
=
›
𝑥∈ℎ 𝜓𝑗 (𝑥)
›
𝜓𝑗 (𝑥)+
𝜓𝑗 (𝑥)
𝑥∈ℎ
𝑥∈ℎ
𝑖−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 =0
𝑖−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 =1
›
𝜓𝑗
𝑥∈ℎ
𝑖−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 =0
𝑥 +
𝜓𝑗
𝑥∈ℎ
𝑖−𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 =0
𝑐𝑖 𝑥
=0
38
± ℎ 𝑖𝑓 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗←
𝑥∈ℎ 𝜓𝑗 (𝑥) =
0
𝑖𝑓 ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
 ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗 ⇒
› All fixed positions in ℎ
› Match the 𝑓 positions in 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
› Match the 𝑦𝑖 in 𝜓𝑗 𝑥 =
›
𝑥∈ℎ 𝜓𝑗 (𝑥) =
−ℎ
› =
ℎ
𝑥∈ℎ
𝑙
𝑗𝑖
𝑖=1(𝑦𝑖 (𝑥𝑖 ))
𝑙
𝑗𝑖
(𝑦
(𝑥
))
𝑖
𝑖
𝑖=1
ℎ⋀𝑗 ℎ𝑎𝑣𝑒 𝑜𝑑𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑖𝑥𝑒𝑑 1𝑠
ℎ⋀𝑗 ℎ𝑎𝑣𝑒 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 1𝑠
39

𝑥∈ℎ 𝜓𝑗 (𝑥) =
𝑥∈ℎ
𝑙
𝑗𝑖
(𝑦
(𝑥
))
𝑖=1 𝑖 𝑖

ℎ ∉ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗 ⇒ 𝑠𝑖𝑔𝑛 ℎ, 𝑗 = 0

1
ℎ
ℎ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗 ⇒ 𝑠𝑖𝑔𝑛 ℎ, 𝑗 =
𝑥∈ℎ 𝜓𝑗 (𝑥)
−1 𝑜𝑑𝑑 1𝑠 𝑖𝑛 ℎ⋀𝑗
=
1 𝑒𝑣𝑒𝑛 1𝑠 𝑖𝑛 ℎ⋀𝑗
40
𝑙 = 3, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 3 =∗ 𝑓𝑓, 𝜓3 𝑥 = 𝑦1 𝑥1 𝑦2 𝑥2
Scheme ℎ = ∗ 11 ∈ ∗ 𝑓𝑓
𝑠𝑖𝑔𝑛 ℎ, 3 =
1
(𝑦
2 1
1 𝑦2 1 +𝑦1 1 𝑦2 1 ) = 1
Scheme ℎ = ∗ 01 ∈ ∗ 𝑓𝑓
𝑠𝑖𝑔𝑛 ℎ, 3 =
1
(𝑦1
2
1 𝑦2 0 +𝑦1 1 𝑦2 0 ) = −1
41
2𝑙 −1
𝑓 ℎ =
𝑗=0
=
𝑤𝑗 𝑠𝑖𝑔𝑛 ℎ, 𝑗
𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
ℎ∈𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝑤𝑗 𝑠𝑖𝑔𝑛(ℎ, 𝑗)
42

Schame 11 ∗ ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠: 0,2,4,6
› Because 11 ∗ is not fixed same as:
› ∗∗∗,∗ 𝑓 ∗, 𝑓 ∗∗, 𝑓𝑓 ∗
𝑓 11 ∗
= 𝑤0 𝑠𝑖𝑔𝑛 11 ∗,∗∗∗ + 𝑤2 𝑠𝑖𝑔𝑛 11 ∗,∗ 𝑓 ∗
+ 𝑤4 𝑠𝑖𝑔𝑛 11 ∗, 𝑓 ∗∗ + 𝑤6 𝑠𝑖𝑔𝑛 11 ∗, 𝑓𝑓 ∗
= 𝑤0 − 𝑤2 − 𝑤4 + 𝑤6
43
𝒋
𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒋
Set of schema
0
∗∗∗
1
∗∗ 𝑓
3
∗ 𝑓𝑓
All schema
∗∗ 1,∗∗ 0,∗ 01,∗ 11,∗ 10,∗ 00
0 ∗ 0, 111,000, … …
∗ 00,∗ 01,∗ 10,∗ 11,100,000,101,
110,011,111,001,010
Schema
***
Fitness average as sum of Walsh coef
𝑤0
∗∗ 0
𝑤0 + 𝑤1
∗∗ 1
𝑤0 − 𝑤1
1 ∗∗
𝑤0 − 𝑤4
11 ∗
𝑤0 − 𝑤2 − 𝑤4 + 𝑤6
101
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 − 𝑤4 + 𝑤5 − 𝑤6 + 𝑤7
44
Part I: An algebraic introduction.
 Part II: Overview of the Walsh Transform
 Part III: Walsh Analysis of Fitness
 Part IV: Walsh Coefficients ←
 Part V: Sumation

45
𝒋
𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 𝒋
Set of schema
0
∗∗∗
1
∗∗ 𝑓
3
∗ 𝑓𝑓
All schema
∗∗ 1,∗∗ 0,∗ 01,∗ 11,∗ 10,∗ 00
0 ∗ 0, 111,000, … …
∗ 00,∗ 01,∗ 10,∗ 11,100,000,101,
110,011,111,001,010
Schema
***
Fitness average as sum of Walsh coef
𝑤0
∗∗ 0
𝑤0 + 𝑤1
∗∗ 1
𝑤0 − 𝑤1
1 ∗∗
𝑤0 − 𝑤4
11 ∗
𝑤0 − 𝑤2 − 𝑤4 + 𝑤6
101
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 − 𝑤4 + 𝑤5 − 𝑤6 + 𝑤7
46
Schema
Fitness average as sum of Walsh coef
***
𝑤0
**0
𝑤0 + 𝑤1
**1
𝑤0 − 𝑤1
1**
𝑤0 − 𝑤4
11*
𝑤0 − 𝑤2 − 𝑤4 + 𝑤6
101
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 − 𝑤4 + 𝑤5 − 𝑤6 + 𝑤7
Low order schema have few terms
 High order schema have many terms

47


∆𝑓 is a recursive definition:
›
›
∆𝑓 of ∗∗∗ 𝑤0
∆𝑓 of ℎ is the fitness difference of schema ℎ from its lower order ∆𝑓
›
𝑓 ∗∗∗ = 𝑤0
𝑓 ∗∗ 1 = 𝑤0 − 𝑤1
𝑓 ∗ 0 ∗ = 𝑤0 + 𝑤2
𝑓 ∗ 01 = 𝑤0 − 𝑤1 + 𝑤2 − 𝑤3
schema ∗ 01
 First order estimation is: 𝑤0 − 𝑤1 + 𝑤2
 Second order estimation is −𝑤3
∆𝑓 𝑜𝑓 (∗ 01) is −𝑤3
Example:
›
›
›
›
›

Interpretation: walsh coeff represent the
ℎ𝑖𝑔ℎ𝑒𝑟 𝑎𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑐ℎ𝑒𝑚𝑎 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 − 𝑛𝑒𝑥𝑡 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑎𝑝𝑟𝑜𝑥
48
An alternative way to get the 𝑤𝑗 walsh coefficients.
› 𝑤𝑗 = 𝑓(𝑥) 𝜓𝑗 (𝑥) = 𝑤1 𝜓1 ⋯ 𝑤2𝑙 𝜓2𝑙 𝜓𝑗 (𝑥)
=𝑤1 𝜓1 𝜓𝑗 (𝑥) + ⋯ + 𝑤𝑗 𝜓𝑗 𝜓𝑗 𝑥
› 𝑓 ℎ =
+ ⋯ + 𝑤2𝑙 𝜓2𝑙 𝜓𝑗 𝑥
𝑥∈ℎ 𝑓(𝑥)
ℎ
› 𝑓 ℎ = 𝑎𝑙𝑙 𝑓𝑖𝑥𝑒𝑑 𝑠𝑐ℎ𝑒𝑚𝑎 =
Schema
𝑥∈ℎ 𝑓(ℎ)
ℎ
=
ℎ 𝑓(ℎ)
ℎ
= 𝑓(ℎ)
Fitness average as sum of Walsh coef
000
𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 + 𝑤6 + 𝑤7
001
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 + 𝑤4 − 𝑤5 + 𝑤6 − 𝑤7
101
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 − 𝑤4 + 𝑤5 − 𝑤6 + 𝑤7
49
X
000
001
010
011
100
101
110
111
50
51
𝑓 𝑥3 𝑥2 𝑥1 = 10 + 5𝑥1 − 10𝑥2 + 0.1𝑥3
𝑥𝑖 ∈ 0,1

A linear bit functions:
› Will receive max at 101 to take
only positive values.
› bit-wise contribution to
maximum.
› Two bit together do not
contribution differently than
each one by itself.
› Therefor all the 2-or-more bit 𝑗
than 𝑤𝑗 = 0
j
x
𝒇(𝒙)
𝒘𝐣
0
000
10
7.55
1
001
15
−2.5
2
010
0
5
3
011
5
0
4
100
10.1 −0.05
5
101
15.1
0
6
110
0.1
0
7
111
5.1
0
j
x
𝒇(𝒙)
𝒘𝒋
1
001
15
−2.5
2
010
0
5
3
011
5
0
52
Part I: An algebraic introduction.
 Part II: Overview of the Walsh Transform
 Part III: Walsh Analysis of Fitness
 Part IV: Walsh Coefficients
 Part V: Sumation ←

53

Walsh functions are a basis of the vector space
𝐹 𝑋 :𝑋 → 𝑅
2𝑙 −1
𝑗=0 𝑤𝑗

𝑊𝑎𝑙𝑠ℎ 𝑝𝑜𝑙𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑓 𝑥 =

Fitness average of schema:
› 𝑓 ℎ =

𝑥∈ℎ 𝑓(𝑥)
ℎ
=
𝑗 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
ℎ∈𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗
𝜓𝑗 (𝑥)
𝑤𝑗 𝑠𝑖𝑔𝑛(ℎ, 𝑗)
Fast walsh transform
Schema
Fitness average as sum of Walsh coef
***
𝑤0
1**
𝑤0 − 𝑤4
11*
𝑤0 − 𝑤2 − 𝑤4 + 𝑤6
101
𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 − 𝑤4 + 𝑤5 − 𝑤6 + 𝑤7
54
55
𝑓 𝑥 = 𝑥2


Will receive max at 111 is 49.
Estimation of the first order schema:
000, 001, 010, 100 is :
𝑓 1 111 = 𝑤0 − 𝑤1 − 𝑤2 − 𝑤4
= 17.5 + 3 + 7.5 + 14 = 42

Second order schema:
𝑓 2 111 = 𝑤0 − 𝑤1 − 𝑤2 + 𝑤3 − 𝑤4 + 𝑤5 + 𝑤6
= 17.5 + 3 + 7.5 + 1 + 14 + 2 + 4 = 49


j
x
𝒇(𝒙)
𝒘𝐣
0
000
0
17.5
1
001
1
−3
2
010
4
−7.5
3
011
9
1
4
100
16
−14
5
101
25
2
6
110
36
4
7
111
49
0
j
x
𝒇(𝒙)
𝒘𝒋
1
001
1
−3
2
010
4
−7.5
4
100
9
−14
∆𝑓 2 = 7, is positive. Only contributes to
prev sum.
This indicates type of problem will be easy
for GA to solve.
56
We shall explain the term by an example.
 Lets consider a 2 bit problem. Our schema are
shown below.
 En example of Deception is a fitness-function :

› Maximum is at 11
› But 𝑓 ∗ 0 > 𝑓 ∗ 1 or 𝑓 0 ∗ > 𝑓(1 ∗)
› It would be better deception if both could take place, but
its impossible.
Order of schema
Schema
0
(∗∗)
1
2
∗0
00
01
∗1
10
0 ∗ (1 ∗)
11 ← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚
57








𝑓 ∗ 0 > 𝑓 ∗ 1 ⟹ 𝑤0 + 𝑤1 > 𝑤0 − 𝑤1 ⟹ 𝑤1 > 0
𝑓 0 ∗ > 𝑓 1 ∗ ⟹ 𝑤0 + 𝑤2 > 𝑤0 − 𝑤2 ⟹ 𝑤2 > 0
Both are impossible because:
𝑓 11 > 𝑓 00 ⟹ 𝑤0 − 𝑤1 − 𝑤2 + 𝑤3 > 𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 ⟹ 𝑤1 + 𝑤2 < 0
We will pick the deception 𝑓 ∗ 0 > 𝑓 ∗ 1 ⟹ 𝑤1 > 0
Other equations:
𝑓 11 > 𝑓 01 ⟹ 𝑤0 − 𝑤1 − 𝑤2 + 𝑤3 > 𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 ⟹ 𝑤2 − 𝑤3 < 0
𝑓 11 > 𝑓 10 ⟹ 𝑤0 − 𝑤1 − 𝑤2 + 𝑤3 > 𝑤0 − 𝑤1 + 𝑤2 − 𝑤3 ⟹ 𝑤2 − 𝑤3 < 0
58
Building-blocks:
a component that fits with others to form
a whole.
 The Walsh coeff fit with the intuitive
understanding of building blocks.
 That higher schema are built from their
lower order schema.

59
Schema: Schema is a similarity subset. A
set of strings with well defined similarity.
 Example : 𝑡ℎ𝑒 𝑠𝑐ℎ𝑒𝑚𝑎 ∗ 1 ∗
= 010,011,110,111
 We shall note a schema as

› ℎ = ℎ1 … ℎ2𝑙 , ℎ𝑖 ∈ ∗, 0,1
60
Related documents