Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trigonometric Integrals I. Integrating Powers of the Sine and Cosine Functions A. Useful trigonometric identities 1. sin 2 x  cos 2 x  1 2. sin 2x  2 sin x cos x 3. cos 2 x  cos 2 x  sin 2 x  2 cos 2 x  1  1  2 sin 2 x 1  cos 2 x 2 1  cos 2 x cos 2 x  2 1 sin x cos y  [sin( x  y )  sin( x  y )] 2 1 sin x sin y  [cos( x  y )  cos( x  y )] 2 1 cos x cos y  [cos( x  y )  cos( x  y )] 2 4. sin 2 x  5. 6. 7. 8. B. Reduction formulas 1.  1 n 1 sin n x dx   sin n1 x cos x  sin n2 x dx n n  2.  cos n x dx   1 n 1 cos n1 x sin x  cos n2 x dx n n C. Examples 1. Find  sin 2 x dx .  sin x (sin x dx) . Let u  sin x and dv  sin x dx  du  cos x dx and v  sin x dx   Method 1(Integration by parts):  1 sin 2 x dx   cos x . Thus,  sin 2  x dx  (sin x)( cos x)  cos 2 x dx   sin x cos x   (1  sin x) dx   sin x cos x  1dx   sin x dx   sin x cos x  x   sin x dx  2 sin x dx   sin x cos x  x   sin x dx  2 2 2 2 2 1 1  sin x cos x  x  C . 2 2 Method 2(Trig identity):  sin 2 x dx  Method 3(Reduction formula):   1 1 1 (1  cos 2 x) dx  x  sin 2 x  C . 2 2 4  1 1 sin 2 x dx   sin x cos x  1dx  2 2 1 1  sin x cos x  x  C . 2 2 2. Find  cos x dx . 3 Use the reduction formula:   1 2 cos 3 x dx  cos 2 x sin x  cos x dx  3 3 1 2 1 2 cos 2 x sin x  sin x  C  sin x(1  sin 2 x)  sin x  C  3 3 3 3 1 sin x  sin 3 x  C . 3  3. Find sin 3 x cos 2 x dx .  sin x cos x dx   sin x sin x cos x dx   (1  cos x) cos x sin xdx   (cos x  cos x)(sin x dx) . Let u  cos x  du   sin x dx . Thus, 3 2 2  2 2 2 2 4 1  1 1 (cos 2 x  cos 4 x)(sin x dx)   (u 2  u 4 ) du   u 3  u 5  C  3 5 1 1  cos 3 x  cos 5 x  C . 3 5 2 4. Find   sin x cos x dx . 2 2    1  1  cos 2 x  1  cos 2 x  (1  cos 2 2 x) dx     dx  2 2 4    1 1  1  cos 4 x  1 1 sin 2 2 x dx  1 dx  cos 4 x dx    dx  4 4  2 8 8  1 1 x  sin 4 x  C . 8 32 sin 2 x cos 2 x dx   5. Find    sin 4x cos 3x dx . Method 1(Integration by parts): Let u  sin 4x and dv  cos 3x dx  du = 1 4 cos 4 x dx and v  sin 3x . Thus, sin 4 x cos 3x dx  3 1 1  4 (sin 4 x) sin 3x   cos 4 x sin 3x dx  sin 4 x sin 3x  3 3  3 4 cos 4 x sin 3x dx . Find cos 4 x sin 3x dx . Let u  cos 4x and dv = 3 1 sin 3x dx  du  4 sin 4 x dx and v   cos 3 x . Thus, 3 1 4 cos 4 x sin 3x dx   cos 4 x cos 3x  sin 4 x cos 3x dx . Returning to 3 3 1 the original integral, sin 4 x cos 3x dx = sin 4 x sin 3 x  3 4 1 4  1 sin 4 x cos 3x dx   sin 4 x sin 3x   cos 4 x cos 3x  3 3 3  3 4 16 7 cos 4 x cos 3x  sin 4 x cos 3x dx   sin 4 x cos 3x dx  9 9 9 1 4 sin 4 x sin 3x  cos 4 x cos 3x  sin 4 x cos 3x dx = 3 9 3 4  sin 4 x sin 3x  cos 4 x cos 3x  C . 7 7       Method 2(Trig identity):       sin 4 x cos 3x dx  1 1  cos x  cos 7 x  C . 2 14 3 1 2  sin x  sin 7x dx  II. Integrating Powers of the Tangent and Secant Functions A. Useful trigonometric identity: tan 2 x  1  sec 2 x B. Useful integrals 1.  sec x tan x dx  sec x  C 2.  sec x dx  tan x  C 3.  tan x dx  ln sec x  C   ln cos x  C 4.  sec x dx  ln sec x  tan x  C 2 C. Reduction formulas 1. 2.  sec n  2 x tan x n  2 sec x dx   sec n  2 x dx n 1 n 1  tan n 1 x tan x dx   tan n  2 x dx n 1  n  n D. Examples 1. Find  2 x dx . tan 2 x dx  2. Find   tan  (sec 2 x  1) dx    sec 2 x dx  1dx  tan x  x  C .  tan xdx . 3 tan 3 xdx  tan 2 x  2  tan x dx  1 tan 2 x  ln sec x  C . 2 4 3. Find   sec xdx . 3 sec 3 x dx  4. Find  sec x tan x 1 1 1  sec x dx  sec x tan x  ln sec x  tan x  C . 2 2 2 2  tan x sec x dx . 2 Let u  tan x  du  sec 2 xdx   tan x sec 2 x dx   udu  1 2 u C  2 1 tan 2 x  C . 2 5. Find  tan x sec 4 x dx .  tan x sec x dx   tan x sec x sec x dx   tan x(1  tan x) sec x dx   tan x sec x dx   tan x sec dx . Let u  tan x  du  sec x dx . Thus, 1 1 1 1 tan x sec x dx  udu  u du  u  u  C  tan x  tan x  C .    2 4 2 4 4 2 2 3  2 2 2 2 4 6. Find 2 3 2 4 2 4 tan x sec 3 x dx .  tan x sec x dx   sec x (sec x tan x dx) . Let u  sec x  du  sec x tan xdx . 1 1 Thus, tan x sec x dx  u du  u  C  sec x  C .   3 3 3 2 3 7. Find  2 3 3 tan 2 x sec 3 x dx .  tan x sec x dx   (sec x 1) sec x dx   sec x dx   sec x dx . Using 1 3 the reduction formula, sec x dx  sec tan x  sec x dx . Thus,  4 4 2 3 2 3 5 5 3 5 3 3      1 3 sec 5 x dx  sec 3 x dx  sec 3 x tan x  sec 3 xdx  4 4 1 1 1 1 sec 3 x dx  sec 3 x tan x  sec 3 x dx  sec 3 x tan x  sec x tan x  4 4 4 8 tan 2 x sec 3 x dx   1 ln sec x  tan x  C . 8 8. Find   tan x sec 4 x dx . tan x sec 4 x dx   tan x sec 2 x sec 2 x dx  Let u  tan x  du  sec 2 x dx   tan x tan 2 x sec 2 x dx     tan x (1  tan 2 x) sec 2 xdx . tan x sec 4 x dx    tan x sec 2 x dx  5 1 2 3 2 7 u 2 du  u 2 du  u 2  u 2  C  3 7 3 7 2 2 (tan x) 2  (tan x) 2  C . 3 7 9. Find  sec x tan x dx . Let u  sec x  u 2  sec x  2udu  sec x tan xdx  u 2 tan xdx  2udu 2 2  tan x dx  2  du . Thus, sec x tan x dx  u du   2 1du  u u u   2u  C  2 sec x  C . 6   Practice Sheet forTrigonometric Integrals (1) Prove the reduction formula:  1 n 1 sin n x dx   sin n1 x cos x  sin n2 x dx n n (2) Prove the reduction formula:  cos n x dx  (3) Prove the reduction formula:  sec n  2 x tan x n  2 sec x dx   sec n  2 x dx n 1 n 1 (4) Prove the reduction formula:  tan n x dx   (5)   n 4  tan 3 (3 x ) dx = 0  (6) 4  cos 2 (2 x) dx = 0  8  sin( 5 x) cos(3x) dx = (8)  tan 3 x sec 3 x dx = (9)  sin x cos 3 x dx = (7)  1 n 1 cos n1 x sin x  cos n2 x dx n n 0 7 tan n 1 x  tan n  2 x dx n 1  (10)   (11) cos 3 x sin 2 x dx = 2  sin 3 x cos x dx = 0 (12)  sin 2 x cos 2 xdx  (13)  tan 5 x sec xdx  Solution Key for Trigonometric Integrals (1)  sin n x dx   sin n1 x sin x dx . Use integration by parts with u  sin n 1 x and dv  sin x dx  du  (n  1) sin n2 x cos x dx and v   sin x dx   sin n n 1  sin x dx   cos x   x sin x dx =  sin n1 x cos x  (n  1) sin n2 x cos 2 x dx      sin n1 x cos x  (n  1) sin n2 x 1  sin 2 x dx   sin n1 x cos x     (n  1) sin n2 x dx  (n  1) sin n x dx  n sin n x dx   sin n1 x cos x     1 n 1 (n  1) sin n2 x dx  sin n x dx   sin n1 x cos x  sin n2 x dx . n n (2)  cos x dx   cos n n 1 x cos x dx . Use integration by parts with u  cos n 1 x and 8 dv  cos x dx  du  (n  1) cos n2 x ( sin x) dx and v   cos x dx  sin x    cos n x dx   cos n1 x cos x dx = cos n1 x sin x  (n  1) cos n2 x sin 2 x dx     cos n1 x sin x  (n  1) cos n2 x 1  cos 2 x dx  cos n1 x sin x     (n  1) cos n2 x dx  (n  1) cos n x dx  n cos n x dx  cos n1 x sin x    (n  1) cos n2 x dx  cos n x dx  (3)   1 n 1 cos n1 x sin x  cos n2 x dx . n n  sec n x dx  sec n2 x sec 2 x dx . Use integration by parts with u  sec n  2 x and dv  sec 2 x dx  du  (n  2) sec n3 x (sec x tan x dx) and v   sec x dx   sec n n2  sec 2 x dx  tan x   x sec 2 x dx = sec n2 x tan x  (n  2) sec n2 x tan 2 x dx      sec n2 x tan x  (n  2) sec n2 x sec 2 x  1 dx  sec n2 x tan x  (n  2) sec n xdx     (n  2) sec n2 x dx  (n  1) sec n x dx  sec n2 x tan x  (n  2) sec n2 x dx   (4) sec n x dx  sec n  2 x tan x n  2  sec n  2 x dx . n 1 n 1   tan x dx   tan n  tan n  2 x dx  n2 x tan 2 x dx  tan n 1 x  n 1  tan n2  tan n2 x dx . 9   x sec 2 x  1 dx   tan n2 x sec 2 xdx  (5) Let u  3x  du  3 dx   tan 3 (3x) dx  reduction formula #4 above to get  1 1 tan 2 u  ln sec u  6 3 4    1 1 tan 3 (3x) 3dx  tan 3 u du . Use 3 3 1 1  tan 2 u  1  tan 3u du   tan u du  3 3  2  3    1 1  4 tan (3 x ) dx =  tan 2 (3x)  ln sec(3x)   3 6 0 3 0 1 1  3   2  3   tan    ln sec     4  3  4  6 1 2 1 1 1 (0)  ln 1   ln 6 3 6 3 1 1 1  1 2 2  tan 0  ln sec0   (1)  ln  2  3 3 6  6  2 . (6) Use the trigonometric identity cos 2     1  cos 2 to get 2   cos 2 (2 x) dx  1  cos(4 x) 1 1 1 1 dx  1dx  cos(4 x) dx  x  sin 4 x   2 2 2 2 8  4  cos 2 (2 x) dx = 0 1    1  1 1      sin     (0)  sin( 0)   . 8 8 2  4  8  2 1 (7) Use the trigonometric identity sin x cos y  [sin( x  y )  sin( x  y )] to get 2   8  0 sin( 5x) cos(3x) dx    1 1 1 1 sin( 2 x) dx  sin( 8x) dx   cos( 2 x)  cos(8x)  2 2 4 16  1   1 1   1  sin( 5 x) cos(3x) dx   cos   cos    cos 0  cos 0  16  4  16   4   4 1 2  1 1 1 3 2       4  2  16 4 16 8 10 (8) (9)  tan 3 x sec 3 x dx =  (sec 2 x  1) sec 2 x (sec x tan x dx)  sec 4 x (sec x tan x dx)   1 1 sec 2 x (sec x tan x dx)  sec 5 x  sec 3 x  C . 5 3 (10)   1  5 2 cos x dx   cos x sin cos 3 x sin 2 x dx = 2 2 1 2 1  sin xcos xdx  2 3 7 2 2 (sin x) 2  (sin x) 2  C . 3 7 x cos x dx    1  sin 2   x sin 2 x cos x dx   sin 3 x cos x (cos x)  dx  1 2  (cos x) 1  2 sin 2 x (sin x dx   (cos x) 1 3 (sin x dx)  (cos x) 2 (sin x dx)  2(cos x) 2 1 1  cos xsin x dx  2 2 5 2  (cos x) 2  5 5   5  8 2     2     2   dx =  2 cos    cos      2 cos 0  cos 0  2   . 5 cos x  2  5   2     5    sin 3 x (12) Use the trigonometric identities cos 2     (sin x) 1 1 sin 2 x (cos x dx)  sin 4 x (cos x dx)  sin 3 x  sin 5 x  C . 3 5 2 0  sin x cos 2 x ( cos x dx)  (sin x) 2 cos x dx  (sin x)    sin x cos 3 x dx =   (11)     tan 2 x sec 2 x (sec x tan x dx)  sin 2 x cos 2 xdx   1  cos 2 1  cos 2 and sin 2   . 2 2 1  1  cos 2 x  1  cos 2 x     dx  2 2 4    11  1  cos 2xdx  2     1 1 1 1  1  cos 4 x  1 1 1 dx  cos 2 2 x dx  x  1 dx    dx  x  4 4 4 4  2 4 8   1 1 1 1 1 1 cos 4 x dx  x  x  sin 4 x  C  x  sin 4 x  C . 8 4 8 32 8 32 (13)  tan 5 x sec xdx   sec  2  tan 4 x tan x sec x dx   2 x  1 sec x tan x dx   tan x 2 2 tan x sec x dx   sec x  2 sec x  1sec x tan x dx  4 2   sec 4 x sec x tan x dx   2 sec 2 xsec x tan x dx   sec x tan x dx  1 2 sec 5 x  sec 3 x  sec x  C . 5 3 12