
gcua11e_ppt_0_2
... function of the form f x K / V x 1/ V , where K and V are constants. (a) If f (x) = 0.2x + 50, find K and V so that f (x) may be written in the form, f x K / V x 1/ V. (b) Find the x-intercept and y-intercept of the line f x K / V x 1/ V in terms of K and V. ...
... function of the form f x K / V x 1/ V , where K and V are constants. (a) If f (x) = 0.2x + 50, find K and V so that f (x) may be written in the form, f x K / V x 1/ V. (b) Find the x-intercept and y-intercept of the line f x K / V x 1/ V in terms of K and V. ...
Relations and Functions
... Check this relation out to determine if it is a function. This is fine—each student gets only one grade. More than one can get an A and I don’t have to give any D’s (so all y’s don’t need to be ...
... Check this relation out to determine if it is a function. This is fine—each student gets only one grade. More than one can get an A and I don’t have to give any D’s (so all y’s don’t need to be ...
Trigonometric Functions The Unit Circle
... move counter-clockwise around the unit circle for t units. The point we arrive at is called the terminal point of t. If t is negative, we travel clockwise. This process gives us an arc on the circle of length t. Recall that the circumference of the unit circle is 2π. Example: Find the terminal point ...
... move counter-clockwise around the unit circle for t units. The point we arrive at is called the terminal point of t. If t is negative, we travel clockwise. This process gives us an arc on the circle of length t. Recall that the circumference of the unit circle is 2π. Example: Find the terminal point ...
CONDITIONAL INDEPENDENCE 1. Introduction
... A collection of random ï-variables is called mutually symmetric if each of them, X, is symmetrically distributed around 0 on each set S taken from the field Vx °f s e t s m t n e probability space defined by the other random variables, i.e. for each such X and S, \SX is symmetric around 0. A collect ...
... A collection of random ï-variables is called mutually symmetric if each of them, X, is symmetrically distributed around 0 on each set S taken from the field Vx °f s e t s m t n e probability space defined by the other random variables, i.e. for each such X and S, \SX is symmetric around 0. A collect ...
Fundamental theorem of calculus
The fundamental theorem of calculus is a theorem that links the concept of the derivative of a function with the concept of the function's integral.The first part of the theorem, sometimes called the first fundamental theorem of calculus, is that the definite integration of a function is related to its antiderivative, and can be reversed by differentiation. This part of the theorem is also important because it guarantees the existence of antiderivatives for continuous functions.The second part of the theorem, sometimes called the second fundamental theorem of calculus, is that the definite integral of a function can be computed by using any one of its infinitely-many antiderivatives. This part of the theorem has key practical applications because it markedly simplifies the computation of definite integrals.