• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Document
Document

abstract - Innovetech
abstract - Innovetech

HVDC
HVDC

HVDC Technology Line Commutated Converters
HVDC Technology Line Commutated Converters

- Krest Technology
- Krest Technology

- IEEE Projects IN MADURAI
- IEEE Projects IN MADURAI

Abstract - PG Embedded systems
Abstract - PG Embedded systems

Project : Switched capacitor voltage regulator
Project : Switched capacitor voltage regulator

POWER ELECTRONICS NOTES 10ES45
POWER ELECTRONICS NOTES 10ES45

a modular multilevel dc/dc converter with fault
a modular multilevel dc/dc converter with fault

DC-DC Converter for Charging Electric Vehicle
DC-DC Converter for Charging Electric Vehicle

... Prototype would require scaling to be feasible. ◦ 1:10 scale selected ◦ 30VDC input ◦ 15VDC output ...
Medium Voltage Power Electronics Converters and Methods
Medium Voltage Power Electronics Converters and Methods

Power Management for Embedded Systems
Power Management for Embedded Systems

HVDC TRANSMISSION SYSTEM USING MULTILEVEL POWER
HVDC TRANSMISSION SYSTEM USING MULTILEVEL POWER

FEASIBILITY STUDY ON APPLICATION OF VOLTAGE SOURCE
FEASIBILITY STUDY ON APPLICATION OF VOLTAGE SOURCE

... This project presents a new voltage source inductive filtering converter (VSIFC) for HVDC-Light transmission system, which is mainly composed of the inductive filtering (IF) transformer and the related full-tuned (FT) branches with the commutating function for the selfcommutated converter. This proj ...
MEEPP 106-3 High Voltage DC Transmission
MEEPP 106-3 High Voltage DC Transmission

hvdc Light Technology
hvdc Light Technology

 
 

< 1 ... 24 25 26 27 28

HVDC converter



An HVDC converter converts electric power from high voltage alternating current (AC) to high-voltage direct current (HVDC), or vice versa. HVDC is used as an alternative to AC for transmitting electrical energy over long distances or between AC power systems of different frequencies. HVDC converters capable of converting up to two gigawatts (GW) and with voltage ratings of up to 900 kilovolts (kV) have been built, and even higher ratings are technically feasible. A complete converter station may contain several such converters in series and/or parallel.Almost all HVDC converters are inherently bi-directional; they can convert either from AC to DC (rectification) or from DC to AC (inversion). A complete HVDC system always includes at least one converter operating as a rectifier (converting AC to DC) and at least one operating as an inverter (converting DC to AC). Some HVDC systems take full advantage of this bi-directional property (for example, those designed for cross-border power trading, such as the Cross-Channel link between England and France). Others, for example those designed to export power from a remote power station such as the Itaipu scheme in Brazil, may be optimised for power flow in only one preferred direction. In such schemes, power flow in the non-preferred direction may have a reduced capacity or poorer efficiency.HVDC converters can take several different forms. Early HVDC systems, built until the 1930s, were effectively rotary converters and used electromechanical conversion with motor-generator sets connected in series on the DC side and in parallel on the AC side. However, all HVDC systems built since the 1940s have used electronic (static) converters.Electronic converters for HVDC are divided into two main categories. Line-commutated converters(HVDC classic) are made with electronic switches that can only be turned on. Voltage-sourced converters(HVDC light) are made with switching devices that can be turned both on and off. Line-commutated converters (LCC) used mercury-arc valves until the 1970s, or thyristors from the 1970s to the present day. Voltage-source converters (VSC), which first appeared in HVDC in 1997, use transistors, usually the Insulated-gate bipolar transistor (IGBT).As of 2012, both the line-commutated and voltage-source technologies are important, with line-commutated converters used mainly where very high capacity and efficiency are needed, and voltage-source converters used mainly for interconnecting weak AC systems, for connecting large-scale wind power to the grid or for HVDC interconnections that are likely to be expanded to become Multi-terminal HVDC systems in future. The market for voltage-source converter HVDC is growing fast, driven partly by the surge in investment in offshore wind power, with one particular type of converter, the Modular Multi-Level Converter (MMC) emerging as a front-runner.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report