• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
KI2317281734
KI2317281734

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

10EE751 HVDC TRANSMISSION
10EE751 HVDC TRANSMISSION

... The reliability of DC transmission is quite good and comparable to that AC systems.  An exhaustive record of existing HVDC links in the world is available from which the reliability statistics cab be computed.  It must be remembered that the performance of Thyristor valves is much more reliable th ...
Sitras SFC plus - center
Sitras SFC plus - center

input 1 - Innovetech
input 1 - Innovetech

No Slide Title
No Slide Title

Document
Document

Abstract - PG Embedded systems
Abstract - PG Embedded systems

... interleaving PWM control. The APS control is used to reduce the voltage stress on switches in light load while the traditional interleaving control is used to keep better performance in heavy load. The boundary condition for swapping between APS and traditional interleaving PWM control is derived. B ...
a novel wall-switched step-dimming concept in led
a novel wall-switched step-dimming concept in led

The increasing shortage of fossil fuels calls for an efficient power
The increasing shortage of fossil fuels calls for an efficient power

... the aforementioned converters are proposed and verified by experimental results. A general state-of-the-art finding is that, base-line knowledge (noise information without an EMI filter) of DM and CM noises is required in order to initiate a filter design process. Moreover, the CM noise modeling of ...
dc/dc converter
dc/dc converter

a high-efficiency resonant switched capacitor converter
a high-efficiency resonant switched capacitor converter

CIRCUIT DIAGRAM Existing System
CIRCUIT DIAGRAM Existing System

Item Spec`s Spec`s with Sw DL 3155M21 CONVERSION MODULE
Item Spec`s Spec`s with Sw DL 3155M21 CONVERSION MODULE

MurrayLink, the longest underground HVDC cable in the
MurrayLink, the longest underground HVDC cable in the

ISSCC 2010 / SESSION 10 / DC
ISSCC 2010 / SESSION 10 / DC

Low-Common Mode Voltage H-Bridge Converter with Additional
Low-Common Mode Voltage H-Bridge Converter with Additional

DC/DC Converter with Transparent Electronics for application on
DC/DC Converter with Transparent Electronics for application on

Point out the Limitations and difficulties of HVDC Transmission System
Point out the Limitations and difficulties of HVDC Transmission System

IAE – 3 Answer key EE2032 – HIGH VOLTAGE DIRECT CURRENT
IAE – 3 Answer key EE2032 – HIGH VOLTAGE DIRECT CURRENT

MAX8857A Smallest, All-Internal MOSFET, 7-Channel 2 AA DSC PMIC General Description
MAX8857A Smallest, All-Internal MOSFET, 7-Channel 2 AA DSC PMIC General Description

Document
Document

MPPT Converter
MPPT Converter

Converter Type TIV
Converter Type TIV

Power Electronics - Gujarat Technological University
Power Electronics - Gujarat Technological University

< 1 ... 20 21 22 23 24 25 26 27 >

HVDC converter



An HVDC converter converts electric power from high voltage alternating current (AC) to high-voltage direct current (HVDC), or vice versa. HVDC is used as an alternative to AC for transmitting electrical energy over long distances or between AC power systems of different frequencies. HVDC converters capable of converting up to two gigawatts (GW) and with voltage ratings of up to 900 kilovolts (kV) have been built, and even higher ratings are technically feasible. A complete converter station may contain several such converters in series and/or parallel.Almost all HVDC converters are inherently bi-directional; they can convert either from AC to DC (rectification) or from DC to AC (inversion). A complete HVDC system always includes at least one converter operating as a rectifier (converting AC to DC) and at least one operating as an inverter (converting DC to AC). Some HVDC systems take full advantage of this bi-directional property (for example, those designed for cross-border power trading, such as the Cross-Channel link between England and France). Others, for example those designed to export power from a remote power station such as the Itaipu scheme in Brazil, may be optimised for power flow in only one preferred direction. In such schemes, power flow in the non-preferred direction may have a reduced capacity or poorer efficiency.HVDC converters can take several different forms. Early HVDC systems, built until the 1930s, were effectively rotary converters and used electromechanical conversion with motor-generator sets connected in series on the DC side and in parallel on the AC side. However, all HVDC systems built since the 1940s have used electronic (static) converters.Electronic converters for HVDC are divided into two main categories. Line-commutated converters(HVDC classic) are made with electronic switches that can only be turned on. Voltage-sourced converters(HVDC light) are made with switching devices that can be turned both on and off. Line-commutated converters (LCC) used mercury-arc valves until the 1970s, or thyristors from the 1970s to the present day. Voltage-source converters (VSC), which first appeared in HVDC in 1997, use transistors, usually the Insulated-gate bipolar transistor (IGBT).As of 2012, both the line-commutated and voltage-source technologies are important, with line-commutated converters used mainly where very high capacity and efficiency are needed, and voltage-source converters used mainly for interconnecting weak AC systems, for connecting large-scale wind power to the grid or for HVDC interconnections that are likely to be expanded to become Multi-terminal HVDC systems in future. The market for voltage-source converter HVDC is growing fast, driven partly by the surge in investment in offshore wind power, with one particular type of converter, the Modular Multi-Level Converter (MMC) emerging as a front-runner.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report