• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Discrete section 1.2 Lecture
Discrete section 1.2 Lecture

Notes for Teachers click here
Notes for Teachers click here

1 + 2
1 + 2

Adding and Subtracting Mixed Numbers
Adding and Subtracting Mixed Numbers

"Maths Vegas Negative Numbers"
"Maths Vegas Negative Numbers"

Numeracy Passport - Windmill Primary School
Numeracy Passport - Windmill Primary School

... Your child has been given a numeracy passport. These are designed to inform you about the expectations related to ‘number’ for each year group and give examples of different questions that you could ask your child to help check their understanding. If you have any questions relating to the passport ...
GRE MATH REVIEW #1  Basic Arithmetic whole numbers
GRE MATH REVIEW #1 Basic Arithmetic whole numbers

The Lambda Calculus - Computer Science, Columbia University
The Lambda Calculus - Computer Science, Columbia University

Review of Basic Concepts
Review of Basic Concepts

A NOTE ON AN ADDITIVE PROPERTY OF PRIMES 1. Introduction
A NOTE ON AN ADDITIVE PROPERTY OF PRIMES 1. Introduction

UNIT II Algebra 1 - Sections 2.2, 2.3, & 2.5
UNIT II Algebra 1 - Sections 2.2, 2.3, & 2.5

... To subtract –6, move right 6 units. ...
How Pascal`s Triangle is Constructed
How Pascal`s Triangle is Constructed

7.5 x 11.5.Doubleline.p65 - Assets
7.5 x 11.5.Doubleline.p65 - Assets

7.5 x 11.5.Doubleline.p65 - Beck-Shop
7.5 x 11.5.Doubleline.p65 - Beck-Shop

rational numbers
rational numbers

... infinitely periodic decimal is a rational number • Terminating: a finite number of digits in the decimal expansion • Infinitely periodic: an infinite number of digits, but digits repeating in ...
Welcome to 6th Grade Ma+h
Welcome to 6th Grade Ma+h

Lesson 1.2 - GEOCITIES.ws
Lesson 1.2 - GEOCITIES.ws

PDF Text File
PDF Text File

3. The Axiom of Completeness A cut is a pair (A, B) such that A and
3. The Axiom of Completeness A cut is a pair (A, B) such that A and

A Tour with Constructive Real Numbers
A Tour with Constructive Real Numbers

T - RTU
T - RTU

byte arithmetic - School of Computer Science, University of
byte arithmetic - School of Computer Science, University of

Representing Inequalities Inequalities Recall: Word Expression
Representing Inequalities Inequalities Recall: Word Expression

... Used if the value is not included in the inequality. Used if the value is included in the inequality. The upper end of the inequality goes on forever in the positive direction. The lower end of the inequality goes on forever in the negative direction. Used to join two intervals together when there i ...
Floating Point Numbers
Floating Point Numbers

... The result, 1100, is the code for -4, the result of subtracting +7 from +3. ...
Full text
Full text

< 1 ... 76 77 78 79 80 81 82 83 84 ... 158 >

Infinitesimal

In mathematics, infinitesimals are things so small that there is no way to measure them. The insight with exploiting infinitesimals was that entities could still retain certain specific properties, such as angle or slope, even though these entities were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the ""infinite-th"" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic ingredient in the procedures of infinitesimal calculus as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, ""infinitesimal"" means ""extremely small"". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.Vladimir Arnold wrote in 1990:Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.↑ ↑ ↑ ↑
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report