• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Algebra I Notes
Algebra I Notes

1 The concept of numbers.
1 The concept of numbers.

A Triangular Journey
A Triangular Journey

Big-Oh Notation Let f and g be functions from positive
Big-Oh Notation Let f and g be functions from positive

journal of number theory 13, 446
journal of number theory 13, 446

Think about this: FRACTION DECIMAL NUMBER 0.5 0.333333… 1
Think about this: FRACTION DECIMAL NUMBER 0.5 0.333333… 1

... The process for limiting the number of digits to the right of the decimal point, by discarding the least significant ones. E.g. Truncate to one decimal digit or to tenths: ...
2 Sequences and Accumulation Points
2 Sequences and Accumulation Points

Full text
Full text

... Tk2.OK.2m 61 The Fn+2 compositions of (n + 1) using lfs and 2fs when put into the nested greatest integer function with 1 and 2 the exponents on a can be arranged so that the results are the integers 1, 2, . .., Fn + 2 i-n sequence. VtlOO^: We have illustrated Theorem 6 for n = 1, 2, . .., 5. Assume ...
Ordinal Numbers
Ordinal Numbers

5.7: Fundamental Theorem of Algebra
5.7: Fundamental Theorem of Algebra

Maths Calculation Policy 2016
Maths Calculation Policy 2016

real analysis - Atlantic International University
real analysis - Atlantic International University

3.4 Complex Zeros and the Fundamental Theorem of Algebra
3.4 Complex Zeros and the Fundamental Theorem of Algebra

... the Intermediate Value Theorem, Theorem 3.1, the Fundamental Theorem of Algebra guarantees the existence of at least one zero, but gives us no algorithm to use in finding it. In fact, as we mentioned in Section 3.3, there are polynomials whose real zeros, though they exist, cannot be expressed using ...
calc 9.3(10)
calc 9.3(10)

solns - CEMC
solns - CEMC

OF DIOPHANTINE APPROXIMATIONS
OF DIOPHANTINE APPROXIMATIONS

CHAP03 Sets, Functions and Relations
CHAP03 Sets, Functions and Relations

... §3.7. The Sum and Product of Relations If R and S are relations on the set X then the sum of R and S is the relation R + S defined on X by: x(R+S)y if xRy or xSy. As sets, this is simply the union: S + T = S ∪ T. Example 10: The relation “spouse of” means “husband or wife of”. If H = “husband of” an ...
REPRESENTATIONS OF THE REAL NUMBERS
REPRESENTATIONS OF THE REAL NUMBERS

Math 7A Unit 1
Math 7A Unit 1

The first function and its iterates
The first function and its iterates

Advanced Calculus
Advanced Calculus

... The issue of convergence must not be ignored or casually assumed. The following example illustrates this: Consider the sequence ( xn ) defined by x1  1, xn 1  2 xn  1. Assuming the ‘convergence’ (actually wrong! The sequence is not convergent) with lim( xn )  x, we would obtain x  2x  1, so t ...
A Simple and Practical Valuation Tree Calculus for First
A Simple and Practical Valuation Tree Calculus for First

2006_30
2006_30

Quantitative Temporal Logics: PSPACE and below - FB3
Quantitative Temporal Logics: PSPACE and below - FB3

Week 1: First Examples
Week 1: First Examples

... There is still an important gap in our reasoning about even and odd numbers. You proved in an earlier exercise that no positive whole number can be both even and odd, but can we really be certain that every positive whole number must be one or the other? The logic of some of our previous proofs woul ...
< 1 ... 28 29 30 31 32 33 34 35 36 ... 158 >

Infinitesimal

In mathematics, infinitesimals are things so small that there is no way to measure them. The insight with exploiting infinitesimals was that entities could still retain certain specific properties, such as angle or slope, even though these entities were quantitatively small. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the ""infinite-th"" item in a sequence. It was originally introduced around 1670 by either Nicolaus Mercator or Gottfried Wilhelm Leibniz. Infinitesimals are a basic ingredient in the procedures of infinitesimal calculus as developed by Leibniz, including the law of continuity and the transcendental law of homogeneity. In common speech, an infinitesimal object is an object which is smaller than any feasible measurement, but not zero in size; or, so small that it cannot be distinguished from zero by any available means. Hence, when used as an adjective, ""infinitesimal"" means ""extremely small"". In order to give it a meaning it usually has to be compared to another infinitesimal object in the same context (as in a derivative). Infinitely many infinitesimals are summed to produce an integral.Archimedes used what eventually came to be known as the method of indivisibles in his work The Method of Mechanical Theorems to find areas of regions and volumes of solids. In his formal published treatises, Archimedes solved the same problem using the method of exhaustion. The 15th century saw the work of Nicholas of Cusa, further developed in the 17th century by Johannes Kepler, in particular calculation of area of a circle by representing the latter as an infinite-sided polygon. Simon Stevin's work on decimal representation of all numbers in the 16th century prepared the ground for the real continuum. Bonaventura Cavalieri's method of indivisibles led to an extension of the results of the classical authors. The method of indivisibles related to geometrical figures as being composed of entities of codimension 1. John Wallis's infinitesimals differed from indivisibles in that he would decompose geometrical figures into infinitely thin building blocks of the same dimension as the figure, preparing the ground for general methods of the integral calculus. He exploited an infinitesimal denoted 1/∞ in area calculations.The use of infinitesimals by Leibniz relied upon heuristic principles, such as the law of continuity: what succeeds for the finite numbers succeeds also for the infinite numbers and vice versa; and the transcendental law of homogeneity that specifies procedures for replacing expressions involving inassignable quantities, by expressions involving only assignable ones. The 18th century saw routine use of infinitesimals by mathematicians such as Leonhard Euler and Joseph-Louis Lagrange. Augustin-Louis Cauchy exploited infinitesimals both in defining continuity in his Cours d'Analyse, and in defining an early form of a Dirac delta function. As Cantor and Dedekind were developing more abstract versions of Stevin's continuum, Paul du Bois-Reymond wrote a series of papers on infinitesimal-enriched continua based on growth rates of functions. Du Bois-Reymond's work inspired both Émile Borel and Thoralf Skolem. Borel explicitly linked du Bois-Reymond's work to Cauchy's work on rates of growth of infinitesimals. Skolem developed the first non-standard models of arithmetic in 1934. A mathematical implementation of both the law of continuity and infinitesimals was achieved by Abraham Robinson in 1961, who developed non-standard analysis based on earlier work by Edwin Hewitt in 1948 and Jerzy Łoś in 1955. The hyperreals implement an infinitesimal-enriched continuum and the transfer principle implements Leibniz's law of continuity. The standard part function implements Fermat's adequality.Vladimir Arnold wrote in 1990:Nowadays, when teaching analysis, it is not very popular to talk about infinitesimal quantities. Consequently present-day students are not fully in command of this language. Nevertheless, it is still necessary to have command of it.↑ ↑ ↑ ↑
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report