
graph homomorphism profiles
... of infinite sequences of natural numbers. Multiplication in the monoid Nω corresponds to the disjoint union of graphs for the left-profile, hom(G1 ∪ G2 , H) = hom(G1 , H)hom(G2 , H), and to the direct product of graphs for the rightprofile, hom(F, G1 × G2 ) = hom(F, G1 )hom(F, G2 ). A graph invarian ...
... of infinite sequences of natural numbers. Multiplication in the monoid Nω corresponds to the disjoint union of graphs for the left-profile, hom(G1 ∪ G2 , H) = hom(G1 , H)hom(G2 , H), and to the direct product of graphs for the rightprofile, hom(F, G1 × G2 ) = hom(F, G1 )hom(F, G2 ). A graph invarian ...
More Tangent, Cotangent, Secant,
... – Second, A affects the graph by either making it steeper or less steeper. If |A| > 1, ...
... – Second, A affects the graph by either making it steeper or less steeper. If |A| > 1, ...
exponential function
... 1. The domain of f (x) = bx consists of all real numbers. The range of f (x) = bx consists of all positive real numbers. 2. The graphs of all exponential functions pass through the point (0, 1) because f (0) = b0 = 1. 3. If b > 1, f (x) = bx has a graph that goes up to the right and is an increasin ...
... 1. The domain of f (x) = bx consists of all real numbers. The range of f (x) = bx consists of all positive real numbers. 2. The graphs of all exponential functions pass through the point (0, 1) because f (0) = b0 = 1. 3. If b > 1, f (x) = bx has a graph that goes up to the right and is an increasin ...
Dual graph
In the mathematical discipline of graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G. The dual graph has an edge whenever two faces of G are separated from each other by an edge. Thus, each edge e of G has a corresponding dual edge, the edge that connects the two faces on either side of e.Graph duality is a topological generalization of the geometric concepts of dual polyhedra and dual tessellations, and is in turn generalized algebraically by the concept of a dual matroid. Variations of planar graph duality include a version of duality for directed graphs, and duality for graphs embedded onto non-planar two-dimensional surfaces.However, the notion described in this page is different from the edge-to-vertex dual (line graph) of a graph and should not be confused with it.The term ""dual"" is used because this property is symmetric, meaning that if H is a dual of G, then G is a dual of H (if G is connected). When discussing the dual of a graph G, the graph G itself may be referred to as the ""primal graph"". Many other graph properties and structures may be translated into other natural properties and structures of the dual. For instance, cycles are dual to cuts, spanning trees are dual to the complements of spanning trees, and simple graphs (without parallel edges or self-loops) are dual to 3-edge-connected graphs.Polyhedral graphs, and some other planar graphs, have unique dual graphs. However, for planar graphs more generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph. Testing whether one planar graph is dual to another is NP-complete.