Electric Generators and Motors
... from a magnet moving through a coil of wire. The coil and magnet are inside a plastic tube that can be shaken causing the magnet to move back and forth through the coil. Assume the magnet has a maximum field strength of 0.05 T. Make reasonable assumptions and specify the size of the coil and the num ...
... from a magnet moving through a coil of wire. The coil and magnet are inside a plastic tube that can be shaken causing the magnet to move back and forth through the coil. Assume the magnet has a maximum field strength of 0.05 T. Make reasonable assumptions and specify the size of the coil and the num ...
LOYOLA COLLEGE (AUTONOMOUS), CHENNAI
... b) Find the potential tential energy of an electric dipole placed in a uniform electric field. 12. Show that π = T. dE/ dT. 13. Using Biot-Savart Savart law , calculate the value of magnetic induction at any point on the axis of a solenoid. 14. Describe with theory the method of measuring high resis ...
... b) Find the potential tential energy of an electric dipole placed in a uniform electric field. 12. Show that π = T. dE/ dT. 13. Using Biot-Savart Savart law , calculate the value of magnetic induction at any point on the axis of a solenoid. 14. Describe with theory the method of measuring high resis ...
Faraday paradox
This article describes the Faraday paradox in electromagnetism. There are many Faraday paradoxs in electrochemistry: see Faraday paradox (electrochemistry).The Faraday paradox (or Faraday's paradox) is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes:1. Faraday's law predicts that there will be zero EMF but there is a non-zero EMF.2. Faraday's law predicts that there will be a non-zero EMF but there is a zero EMF.Faraday deduced this law in 1831, after inventing the first electromagnetic generator or dynamo, but was never satisfied with his own explanation of the paradox.