• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Lecture 4: Bayes` Law
Lecture 4: Bayes` Law

theoretical probability
theoretical probability

... that the event will occur. The odds against an event describe the likelihood that the event will not occur. Odds are usually written with a colon in the form a:b, but can also be written as a to b or . ...
Basic Probability
Basic Probability

Document
Document

... Definition: A subset of a sample space is called an event.  A given event is said to have occurred if the outcome of the experiment is one of the outcomes in the event. For example, if a die comes up 2, the events {2, 4, 6} and {1, 2, 3} have both occurred, along with every other event that contain ...
IA- Statistics Iowa Core Mathematics 2012
IA- Statistics Iowa Core Mathematics 2012

Stat 400, section 3.5, Hypergeometric and Negative Binomial
Stat 400, section 3.5, Hypergeometric and Negative Binomial

1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

Probability and the Chi-Square Test written by JD
Probability and the Chi-Square Test written by JD

Chapter 5
Chapter 5

Lecture-2
Lecture-2

... The manager of a recreational facility has determined that the probability he will have 1000 or more visitors on any Sunday in July depends upon the maximum temperature for that Sunday as shown in the following table. The table also gives the probabilities that the maximum temperature will fall in t ...
binomial distribution
binomial distribution

key terms
key terms

The probability of Davis getting a merit and above for his Probability
The probability of Davis getting a merit and above for his Probability

Statistics 100A Homework 7 Solutions
Statistics 100A Homework 7 Solutions

Chapter 9_8 Lesson - Saint Joseph High School
Chapter 9_8 Lesson - Saint Joseph High School

Lect.3 - Department of Engineering and Physics
Lect.3 - Department of Engineering and Physics

Introduction to Statistics
Introduction to Statistics

Document
Document

Queue Analysis
Queue Analysis

... another off the queue and the queue moves to state k-1. So, the average rate of changing from state k to k-1 is p(k), since  is the average rate of servicing messages. To proceed with this analysis, we need to know something about the random processes that govern arrivals and servicing. Let’s focu ...
Queue Analysis
Queue Analysis

... another off the queue and the queue moves to state k-1. So, the average rate of changing from state k to k-1 is p(k), since  is the average rate of servicing messages. To proceed with this analysis, we need to know something about the random processes that govern arrivals and servicing. Let’s focu ...
PROBABILITY AND STATISTICS
PROBABILITY AND STATISTICS

Fuzzy Logic Ideas Can Help in Explaining Kahneman and Tversky`s
Fuzzy Logic Ideas Can Help in Explaining Kahneman and Tversky`s

11–2 Probability and Punnett Squares
11–2 Probability and Punnett Squares

Chapter 1: Statistics
Chapter 1: Statistics

Unit 7 Extra Practice Answers
Unit 7 Extra Practice Answers

< 1 ... 140 141 142 143 144 145 146 147 148 ... 305 >

Probability interpretations



The word probability has been used in a variety of ways since it was first applied to the mathematical study of games of chance. Does probability measure the real, physical tendency of something to occur or is it a measure of how strongly one believes it will occur, or does it draw on both these elements? In answering such questions, mathematicians interpret the probability values of probability theory.There are two broad categories of probability interpretations which can be called ""physical"" and ""evidential"" probabilities. Physical probabilities, which are also called objective or frequency probabilities, are associated with random physical systems such as roulette wheels, rolling dice and radioactive atoms. In such systems, a given type of event (such as the dice yielding a six) tends to occur at a persistent rate, or ""relative frequency"", in a long run of trials. Physical probabilities either explain, or are invoked to explain, these stable frequencies. Thus talking about physical probability makes sense only when dealing with well defined random experiments. The two main kinds of theory of physical probability are frequentist accounts (such as those of Venn, Reichenbach and von Mises) and propensity accounts (such as those of Popper, Miller, Giere and Fetzer).Evidential probability, also called Bayesian probability (or subjectivist probability), can be assigned to any statement whatsoever, even when no random process is involved, as a way to represent its subjective plausibility, or the degree to which the statement is supported by the available evidence. On most accounts, evidential probabilities are considered to be degrees of belief, defined in terms of dispositions to gamble at certain odds. The four main evidential interpretations are the classical (e.g. Laplace's) interpretation, the subjective interpretation (de Finetti and Savage), the epistemic or inductive interpretation (Ramsey, Cox) and the logical interpretation (Keynes and Carnap).Some interpretations of probability are associated with approaches to statistical inference, including theories of estimation and hypothesis testing. The physical interpretation, for example, is taken by followers of ""frequentist"" statistical methods, such as R. A. Fisher, Jerzy Neyman and Egon Pearson. Statisticians of the opposing Bayesian school typically accept the existence and importance of physical probabilities, but also consider the calculation of evidential probabilities to be both valid and necessary in statistics. This article, however, focuses on the interpretations of probability rather than theories of statistical inference.The terminology of this topic is rather confusing, in part because probabilities are studied within a variety of academic fields. The word ""frequentist"" is especially tricky. To philosophers it refers to a particular theory of physical probability, one that has more or less been abandoned. To scientists, on the other hand, ""frequentist probability"" is just another name for physical (or objective) probability. Those who promote Bayesian inference view ""frequentist statistics"" as an approach to statistical inference that recognises only physical probabilities. Also the word ""objective"", as applied to probability, sometimes means exactly what ""physical"" means here, but is also used of evidential probabilities that are fixed by rational constraints, such as logical and epistemic probabilities.It is unanimously agreed that statistics depends somehow on probability. But, as to what probability is and how it is connected with statistics, there has seldom been such complete disagreement and breakdown of communication since the Tower of Babel. Doubtless, much of the disagreement is merely terminological and would disappear under sufficiently sharp analysis.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report