Electric Field - Purdue Physics
									
... Electric Field There is something in space waiting for a charged particle to interact with it! This virtual force is called electric field. ...
                        	... Electric Field There is something in space waiting for a charged particle to interact with it! This virtual force is called electric field. ...
									Higgs Field and Quantum Entanglement
									
... system as a whole. It thus appears that one particle of an entangled pair "knows" what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separa ...
                        	... system as a whole. It thus appears that one particle of an entangled pair "knows" what measurement has been performed on the other, and with what outcome, even though there is no known means for such information to be communicated between the particles, which at the time of measurement may be separa ...
									Specialization: 010700/02 Physics of atoms and molecules
									
... calculations are performed. In the first only the correlation of the valence electrons is taken into account. In the second the correlation of 5s5p5d core electrons of lead and 1s electrons of fluorine are taken into account as well. The difference between the results of these two series is adjusted ...
                        	... calculations are performed. In the first only the correlation of the valence electrons is taken into account. In the second the correlation of 5s5p5d core electrons of lead and 1s electrons of fluorine are taken into account as well. The difference between the results of these two series is adjusted ...
									1993 AP Physics B Free-Response
									
... Electrons emitted from the cathode are accelerated to the anode, where x-rays are produced. a. Determine the maximum frequency of the x-rays produced by the tube. b. Determine the maximum momentum of the x-ray photons produced by the tube. An x-ray photon of the maximum energy produced by this tube ...
                        	... Electrons emitted from the cathode are accelerated to the anode, where x-rays are produced. a. Determine the maximum frequency of the x-rays produced by the tube. b. Determine the maximum momentum of the x-ray photons produced by the tube. An x-ray photon of the maximum energy produced by this tube ...
									The Spring 2006 Qualifying Exam, Part 1
									
... Before the neutron was discovered one model assumed the atomic nucleus to be made of protons and electrons. Show that the observation that the characteristic size of a nucleus is several times 10-15 m and that the average binding energy of a particle in the nucleus is less than 10 MeV makes this mod ...
                        	... Before the neutron was discovered one model assumed the atomic nucleus to be made of protons and electrons. Show that the observation that the characteristic size of a nucleus is several times 10-15 m and that the average binding energy of a particle in the nucleus is less than 10 MeV makes this mod ...
Renormalization
                        In quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, renormalization is any of a collection of techniques used to treat infinities arising in calculated quantities.Renormalization specifies relationships between parameters in the theory when the parameters describing large distance scales differ from the parameters describing small distances. Physically, the pileup of contributions from an infinity of scales involved in a problem may then result in infinities. When describing space and time as a continuum, certain statistical and quantum mechanical constructions are ill defined. To define them, this continuum limit, the removal of the ""construction scaffolding"" of lattices at various scales, has to be taken carefully, as detailed below.Renormalization was first developed in quantum electrodynamics (QED) to make sense of infinite integrals in perturbation theory. Initially viewed as a suspect provisional procedure even by some of its originators, renormalization eventually was embraced as an important and self-consistent actual mechanism of scale physics in several fields of physics and mathematics. Today, the point of view has shifted: on the basis of the breakthrough renormalization group insights of Kenneth Wilson, the focus is on variation of physical quantities across contiguous scales, while distant scales are related to each other through ""effective"" descriptions. All scales are linked in a broadly systematic way, and the actual physics pertinent to each is extracted with the suitable specific computational techniques appropriate for each.