Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Mid-term Exam (December 6, 2002, 0900-1200hr) 2940603 Advanced Econometrics (Assoc. Prof. Pongsa Pornchaiwiseskul) Instructions: a) Textbooks, lecture notes and calculators are allowed. b) Each must work alone. Cheating will not be tolerated. c) There are four tests. You don’t need the knowledge of time series analysis. Attempt all the tests. Use only the provided test-books. d) All the hypothesis testing will use 0.05 as the level of significance. TEST#1 (20 points) Using data for 40 inexperienced employees from each of Firm A and Firm B, a labor economist estimated the following model. lnE_Ai = + S_Ai + ui for Firm A lnE_Bi = + S_Bi + vi for Firm B where lnE_fi = the natural logarithm of earnings of employee S_fi = the number of years of schooling f = A,B ui,vi = IID normal error terms Var(ui) = [A]2 for Firm A’s employees Var(vi) = [B]2 for Firm B’s employees Based upon printouts (1.1)-(1.3), 1.1) provide the best estimates for the model parameters (,,,A,B). Explain in details. 1.2) test whether both firms can give the same model parameters. That is, test for H0: = , A = B H1: , A B TEST#2 (20 points) It is postulated that IT expenditure of a car service center is related to satisfaction of its customers, especially, the female customers. A customer satisfaction survey has been conducted for ten (10) service centers. Eight (8) male and eight (8) female customers have been selected at each service center. The LOGIT model has been used: Pr(CSij=1) = 1/(1+exp(Zij)) Zij = 1 + 2ITEXPi + 3ITEXPi FEMALEij where ij = the jth customer at center i CSij = dummy variable for customer satisfaction = 1 if the jth customer at center i is satisfied = 0, otherwise ITEXPi = IT expenditure of center i FEMALEij = dummy variable for gender of customer ij = 1 if the jth customer at center i is female = 0, otherwise Based on EViews printout(2.1), answer the following questions in details: 2.1) Write down the best estimate for the above model. 2.2) Test whether the IT expenditure will have effect on the customer satisfaction. 2.3) Test whether the effect of IT expenditure on male customer is different from that on female customers. 2.4) If the 16 customers are randomly selected from each service center without pre-determining the number of female customers, how the model will be modified and how will the hypothesis in Question 2.3 be tested? TEST#3 (20 points) Five stocks are to be used in weekly return analysis. The following model has been used to fit the observed data: Rit = 1 + 2i(RMt - RFt) + it where Rit = weekly return of stock i in week t RMt = weekly return of the whole market in week t RFt = weekly return of risk-free asset in week t it = IID error term for stock i in week t V(it) = 2 for all i,t 3.1) If the five stocks are pre-selected, explain how to estimate the parameters 1, 21, 22, 23, 24, 25, 2 3.2) If the five stocks are to be randomly selected, explain how to estimate the parameters. Note: Do not refer to EViews or any other software. TEST#4 (20 points) Determine the shaded figures in EViews printouts (4.14.2). Explain in details how you do it. ************PRINTOUT 1.1 ============================================================ Dependent Variable: LNE? Method: Pooled Least Squares Date: 12/05/02 Time: 16:03 Sample: 1 40 Included observations: 40 Number of cross-sections used: 2 Total panel (balanced) observations: 80 ============================================================ Variable CoefficientStd. Errort-Statistic Prob. ============================================================ C 13.48166 2.449696 5.503400 0.0000 S? 0.209602 0.216780 0.966890 0.3366 ============================================================ R-squared 0.011844 Mean dependent var 15.78544 Adjusted R-squared -0.000825 S.D. dependent var 5.088289 S.E. of regression 5.090388 Sum squared resid 2021.140 Log likelihood -242.6907 F-statistic 0.934877 Durbin-Watson stat 0.264905 Prob(F-statistic) 0.336587 ============================================================ Residual Covariance Matrix ==================================== _A _B ==================================== _A 26.25038 -22.05547 _B -22.05547 24.27811 ==================================== ************PRINTOUT 1.2 ============================================================ Dependent Variable: LNE? MEcon Thai Program, Faculty of Economics, Chulalongkorn University Page 1/2 Mid-term Exam (December 6, 2002, 0900-1200hr) 2940603 Advanced Econometrics (Assoc. Prof. Pongsa Pornchaiwiseskul) Method: Pooled Least Squares Date: 12/05/02 Time: 16:10 Sample: 1 40 Included observations: 40 Number of cross-sections used: 2 Total panel (balanced) observations: 80 ============================================================ Variable CoefficientStd. Errort-Statistic Prob. ============================================================ S? 0.454514 0.072371 6.280358 0.0000 Fixed Effects _A--C 15.58021 _B--C 5.999372 ============================================================ R-squared 0.893239 Mean dependent var 15.78544 Adjusted R-squared 0.890466 S.D. dependent var 5.088289 S.E. of regression 1.684019 Sum squared resid 218.3659 Log likelihood -153.6809 Durbin-Watson stat 2.232289 ============================================================ Residual Covariance Matrix ==================================== _A _B ==================================== _A 2.550235 -0.061847 _B -0.061847 2.908912 ==================================== ************PRINTOUT 1.3 ============================================================ Dependent Variable: LNE? Method: GLS (Cross Section Weights) Date: 12/05/02 Time: 16:10 Sample: 1 40 Included observations: 40 Number of cross-sections used: 2 Total panel (balanced) observations: 80 Convergence achieved after 13 iteration(s) ============================================================ Variable CoefficientStd. Errort-Statistic Prob. ============================================================ S? 0.537362 0.072473 7.414611 0.0000 Fixed Effects _A--C 14.69880 _B--C 5.059579 ============================================================ Weighted Statistics ============================================================ R-squared 0.940496 Mean dependent var 16.58745 Adjusted R-squared 0.938950 S.D. dependent var 6.872830 S.E. of regression 1.698156 Sum squared resid 222.0476 Log likelihood -153.3926 Durbin-Watson stat 2.224463 ============================================================ Unweighted Statistics ============================================================ R-squared 0.891422 Mean dependent var 15.78544 Adjusted R-squared 0.888601 S.D. dependent var 5.088289 S.E. of regression 1.698289 Sum squared resid 222.0824 Durbin-Watson stat 2.249709 ============================================================ Residual Covariance Matrix ==================================== _A _B ==================================== _A 2.174040 -0.132839 _B -0.132839 3.378019 ==================================== Covariance matrix computed using second derivatives ============================================================ Variable CoefficientStd. Errorz-Statistic Prob. ============================================================ C -1.644284 0.448629 -3.665129 0.0002 ITEXP 0.037119 0.008532 4.350553 0.0000 ITEXP*FEMALE 0.001928 0.006306 0.305651 0.7599 ============================================================ Mean dependent var 0.600000 S.D. dependent var 0.491436 S.E. of regression 0.453367 Akaike info criteri1.214856 Sum squared resid 32.27002 Schwarz criterion 1.272515 Log likelihood -94.18845 Hannan-Quinn criter1.238269 Restr. log likelihoo-107.6819 Avg. log likelihoo-0.588678 LR statistic (2 df) 26.98683 McFadden R-squared 0.125308 Probability(LR stat) 1.38E-06 ============================================================ Obs with Dep=0 64 Total obs 160 Obs with Dep=1 96 ************PRINTOUT 4.1 ============================================================ Dependent Variable: Y Method: Least Squares Date: 12/05/02 Time: 21:49 Sample: 1 38 Included observations: 38 ============================================================ Variable CoefficientStd. Errort-Statistic Prob. ============================================================ C 5.668538 2.258747 2.509594 0.0172 X2 0.335393 0.108774 3.083397 0.0041 X3 0.401936 0.311425 1.290633 0.2058 Z1 0.139932 0.218411 0.640683 0.5262 Z2 -0.948379 0.935091 -1.014210 0.3179 ============================================================ R-squared 0.407902 Mean dependent var 9.013614 Adjusted R-squared 0.336133 S.D. dependent var 1.852037 S.E. of regression 1.509003 Akaike info criteri3.782855 Sum squared resid 75.14399 Schwarz criterion 3.998327 Log likelihood -66.87424 F-statistic 5.683514 Durbin-Watson stat 2.095295 Prob(F-statistic) 0.001357 ============================================================ ************PRINTOUT 4.2 ============================================================ Redundant Variables: Z1 Z2 ============================================================ F-statistic 0.532482 Probability Log likelihood ratio 1.206951 Probability ============================================================ Test Equation: Dependent Variable: Y Method: Least Squares Date: 12/05/02 Time: 21:50 Sample: 1 38 Included observations: 38 ============================================================ Variable CoefficientStd. Errort-Statistic Prob. ============================================================ C 4.634257 1.845062 2.511708 0.0168 X2 0.394092 0.086650 4.548067 0.0001 X3 0.349698 0.278859 1.254031 0.2181 ============================================================ R-squared 0.388794 Mean dependent var 9.013614 Adjusted R-squared 0.353868 S.D. dependent var 1.852037 S.E. of regression 1.488710 Akaike info criteri Sum squared resid 77.56901 Schwarz criterion Log likelihood -67.47772 F-statistic Durbin-Watson stat 2.101511 Prob(F-statistic) ============================================================ End of Exam ************PRINTOUT 2.1 ============================================================ Dependent Variable: CS Method: ML - Binary Logit Date: 12/05/02 Time: 21:17 Sample: 1 160 Included observations: 160 Convergence achieved after 3 iterations MEcon Thai Program, Faculty of Economics, Chulalongkorn University Page 2/2