Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name: Date: Calculus Integration (4.1-4.3) Quiz Review What is the general power rule for integration? List all the trigonometric antiderivatives (try from memory). ò cos xdx = sinx + C ò sin xdx = -cosx + C ò sec x tan xdx = secx ò csc 2 ò sec xdx = tanx + C ò csc x cot xdx = -cscx + C 2 xdx = -cot2x + C Find the indefinite integral. 1. ò (2x 2 + x -1)dx 2x3/3 + x2/2 – x + C 2. ò x 3 +1 dx x2 = (x + x-2) dx 3. ò (5cos x - 2sec 2 5sinx – 2tanx + C = x2/2 – x-1 + C 4. A ball is launched vertically upward from ground level with an initial velocity of 96 feet per second. a = -32 (constant acceleration) a. Find the velocity and position functions of the ball. v = -32 dt = -32t + C -32t + 96 a = (-32t + 96) dt = -32t2/2 + 96t + C -16t2 + 96t + 0 b. When is the ball moving up? velocity positive -32t + 96 = -32(t – 3) > 0 t – 3 < 0 t < 3 sec. c. When is the ball at its maximum height? velocity = 0 t = 3 sec. d. What is the ball’s maximum height? h(3) = -16(3)2 + 96(3) = 144 ft. x)dx What is the summation formula for upper or lower sums? n A » å f (ci )Dx where Δx = (b – a)/n and ci = mi for lower or Mi for upper. i=1 5. Use upper and lower sums to approximate the area of the region using four subintervals of equal width. Δx = (2 – 0)/4 = ½ A ≈ S = (½)(10) + (½)(8) + (½)(5) + (½)(10/(1.52 + 1) ≈ 13.038 units2 A ≈ s = (½)(8) + (½)(5) + (½)(10/(1.52 + 1) + (½)(2) ≈ 8.538 units2 For the graph of f shown above, find: 5 6. 0 ò f (x)dx 8. f (x)dx =05f(x)dx+05f(x)dx 9. ò f (x)dx =45f(x)dx+57f(x)dx 4 0 ½(1)(1) + -(½)(2)(2) = ½ – 2 = -1.5 3.5 + -(½ 4(2)) = -1.5 12. Given a. 6 6 2 6 2 7 11. ò f (x) dx make f pos. 4 = ½(1)(1) + (½)(2)(2) = 2.5 ò f (x)dx = 10 and ò g(x)dx = 3 , evaluate… ò [ f (x) + g(x)] dx = 10 + 3 = 13 6 c. 2 ò [ f (x) - g(x)] dx = -10 – (-3) = -7 6 ò [ 2 f (x) - 3g(x)] dx = 2(10) – 3(3) = 11 2 2 b. make area pos. = |-1.5| = 1.5 7 9 ò f (x)dx 4 1.5 ½ (2 + 5)(1) = 3.5 ò 10. 9 0 7. ò 7 f (x)dx = -09f(x)dx 6 d. ò 5 f (x)dx = 5(10) = 50 2