Download Lessons from D3 Skeleton Note MCF3MI U2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Volume and displacement indicators for an architectural structure wikipedia , lookup

Factorization wikipedia , lookup

Transcript
Unit 2 – Day 3 - Common Factoring
To factor an expression is to write it as a product.
It is the opposite of ________________________.
Common Factoring is the easiest type of factoring. It will always be the method of factoring that should be
attempted ___________.
Ex. 1 Find the GCF.
a) 24, 36, 60
b) 4x2, 10x3, 8x4
c) 2a(a - 3), 5(a - 3)
Ex. 2: Determine the greatest common factor. Use the GCF to factor the expression.
a) 3a - 9
b) x2 + 2x
c) 5a2 + 10a
e) 10x3 - 15x2
f) 3x2y + 12xy
g) 15a3b4c + 20a2b5c3
Ex. 3: Factors can sometimes be polynomials
i) a (2x+1)+b (2x+1)
ii) 2(a +b)-3c (a +b)
Ex. 4: Factor by grouping
i) bx + 3x + by + 3y
Ex. 5 Determine the unknown measurement.
Pg 93 # 2, 3, 5 – 9, 11, 15, 16
d) 2x3 + 6x2 - 12x
ii) 9m + 12 - 15m2 - 20m
iii) 4(r -t) -3s (t -r)
Warm up
Factor.
1) 5b - 10
3) 14x4 - 21x3
2) -8a + 12
4) 6a5b4 - 12a3b3 + 18a4b2
Unit 2 Day 4: Factoring Trinomials: x2 + bx + c
(x + 2)(x + 1) =
Steps for factoring trinomials of the form x2 + bx + c
1) Write two brackets with x at the front of each.
2) Fill in two numbers that
-
3) Check by expanding.
** Remember to pay attention to the signs!!
If numbers multiply to give a negative we know
If numbers multiply to a positive we know
Examples: Factor. (Remember to common factor first if possible!)
1) x2 - 4x + 3
4) a2 - 4a – 21
7) 3x2 - 12x
2) x2 + 14x + 40
5) n2 - n - 30
8) 2m2 + 10m – 48
3) x2 - 7x + 12
6) x2 + 2xy - 48y2
9) 4y2 - 8y – 60
10) c2 – 10c + 25
pg 99 # 2, 3, 5, 6, 7, 9, 14
Warm Up
Factor
a) x2 - x - 6
b) x2 + x – 6
c) 2x2 - 18x + 40
Unit 2 Day 5: Factoring Tricky Trinomials
Factor completely
4x2 - 8x - 12
common factor
sum & product
Not so tricky... but! Factor 2n2 + 7n + 6
Method 1: Factor using a chart.
2n2 + 7n + 6
Method 2: Factor using decomposition.
2n2 + 7n + 6
Examples: Factor
a) 3a2 - 17a + 20
b) 6p2 + 11p – 10
c) 16m2 – 26mn – 12n2
d) 5k2 – 17k - 4
Question:
5x - 4 is a factor of 5x2 + 26x - 24. What is the other factor?
How can you check to see if you have factored correctly?
p. 109 # 2, 4 – 6, 9, 10, 13, 14
Warm up
Factor
1) x2 - 6x + 9
2) 4x2 + 12x + 9
Unit 2 Day 6 – Special Quadratics
Perfect Square Trinomials
Factor
1) t2 -12t + 36
2) 25y2 + 40yz + 16z2
Pattern:
Difference of Squares
Factor
x2 - 25
Pattern:
Factor
1) 49y2 - 36
2) 36 - 9k2
3) 28x2 - 175y2
pg. 115 #2, 3, 4, 7, 11
4) a4 - 16
Unit 7 Review
1) Expand and simplify
 a) 2x(3x - 1) + 4(x2 + 3x + 3) - 2x(5x - 3)
 b) 2(x + 1)(3x - 7) - (x + 3)2
2) Factor fully.
 a) x2 + 2x - 35 
b) 9x – 36
c) 3x2 + 14x +8
d) x2 + xy + 2x + 2y
e) 2x3 - 6xy + 10x
f) 4x2 + 16x - 48
g) 2x2 – 50  
h) 9x2 - y2  
i) 6a3 - 4a2 - 16a
 j) 16x2 - 24x + 9  
k) (x+y)2 - 7(x+y) – 18
l) (x + 5)2 - (3x - 2)2
3) Determine the length of the rectangle, given the area and the width.
x-5
3x
A = 6x2 + 15x
A = x2 - 15x + 50
4) Determine two possible values of k to make each expression factorable.
a) x2 + kx + 12
b) x2 - 2x + k