Download Are you ready for Calculus? Name: ________________________

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Are you ready for Calculus?
Name: ________________________
Do ALL work on a separate sheet of paper.
1.
Simplify:
x  9x
a) 2
x  7 x  12
2.
2
3 2
b)
4
1 5
 2a 2 
2
a 
b
c)
3
 
a
3
9ab
b)
b
3
x1
 25
b)
ab  a
d) 2
b b
e)
a 1
b 1 a
2
 a 2 / 3   b3/ 2 
f)  1/ 2   1/ 2 
b  a 
1
 32 x 2
3
c)
log2 x  3
d) log 3 x  2 log 3 4  4 log 3 5
2
Simplify. Do not use a calculator!

2

b)
2log4 9  log2 3
2log 3 5
c) 3
Simplify:
1/ 2
a) log10 10
7.
1
1 3  5
Solve for x. Do not use a calculator!
a) log 2 5  log 2 x  1  log 2  x  1
6.
c)
p q
a) 5
5.
9  x 2
d)
3  x 1
Write each of the following expressions in the form ca b , where c, p and q are real numbers:
a)
4.
2
Rationalize the denominator:
a)
3.
1 1

x
5
c)
1 1

x 2 25
x  2x  8
b) 3
x  x2  2x
3
 1 
x 
 10 
b) log10 
c) 2 log
x  3log x1/ 3
Solve for the indicated variables:
a)
x y z
   1, for a
a b c
b)
c)
A  2 r 2  2 rh, for positive r
d) A  P  nrP, for P
e) 2 x  2 yd  y  xd ,
for d
f)
V  2  ab  bc  ca  , for a
2x 1 x

 0,
4
2
for x
Are you ready for Calculus?
8.
Page 2
For the following equations, complete the square and reduce to one of the standard forms
y  k  a  x  h  or x  h  a  y  k  :
2
a)
9.
y  x2  4x  3
6
9 y2  6 y  9  x  0
3
d) x  1
c) 8 x  27
2
4
3
4
b) 4 x  8 x  25 x  50  0
3
c) 8 x  27  0
2
3
Solve.
a)
3sin 2 x  cos2 x; 0  x  2
c)
tan x  sec x  2cos x;    x  
b)
cos2 x  sin 2 x  sin x;    x  
Without using a calculator, evaluate the following:
a)
b) sin
cos 210
e) cos
13.
c)
Solve over the real numbers.
6
12.
3x 2  3x  2 y  0
b) 4 x  8 x  25 x  50
4
a) x  16 x  0
11.
b)
Factor completely.
a) x  16 x
10.
2
9
4
f) sin
5
4
1
c)
3
2
tan 1 (1)
d)
sin 1 (1)
7
6
h)
cos 1 (1)
g) tan
Using the parent function y = sin(x), sketch each of the following graphs.
Do not use
your calculator.


a) y  sin  x 


4
c) y  2 sin x
 

2
b) y  sin 

d) y  cos x
2
e) y 
1
sin x
14.
Solve the equations:
a) 4 x  12 x  3  0
2
15.
b) 2 x  1 
5
x2
c)
x 1
x

0
x
x 1
Find the remainders after each division is performed:
a)
x5  4 x 4  x3  7 x  1 divided by x  2
b)
x5  x4  x3  2 x 2  x  4 divided by x3  1
Are you ready for Calculus?
16.
Page 3
a) The equation 12 x  23x  3x  2  0 has a solution x = 2. Find all other solutions.
3
2
b) Find all solutions for 12 x  8 x  x  1  0 knowing they are rational and between 1 and -1.
3
17.
Solve the inequalities:
a)
18.
x2  2 x  3  0
b)
2x 1
1
3x  2
c) x  x  1  0
2
Solve for x.
a)
19.
2
6
8

3
x x5
b)
5x  2  8
c)
2x 1  x  3
Determine the equations of the following lines:
a) the line through (-1, 3) and (2, -4)
b) the line through (-1, 2) and perpendicular to 2x – 3y + 5 =0
c) the line through (2, 3) and the midpoint of the segment from (-1, 4) and (3, 2)
20.
a) Algebraically find the point of intersection of the lines 3x – y – 7 = 0 and x + 5y + 3 = 0.
b) Graph the system of inequalities (remember to shade!) 3x  y  7  0
21.
and
x  5y  3  0 .
Find the equations of the following circles:
a) The circle with center (1, 2) that passes through the point (-2, 1).
b) The circle that passes through the origin and has intercepts equal to 1 and 2 on the x-axis and
y-axis, respectively.
22.
For the circle x
2
 y 2  6 x  4 y  3  0 , find:
a) the center and radius
23.
A circle is tangent to the y-axis at (0, 3) and has one x-intercept at (1, 0).
a) Determine the other x-intercept.
24.
b) the equation of the tangent line at (-2, 5)
b) Find the equation of the circle.
A curve is traced by a point P(x, y) which moves such that its distance from the point A (-1, 1) is three
times its distance from the point B (2, -1). Determine the equation of the curve.
Are you ready for Calculus?
25.
Page 4
a) Find the domain of the function f ( x) 
3x  1
x2  x  2
b) Find the domain and range of the following functions: i) f(x) = 7
26.
Graph
g ( x) 
ii) g ( x) 
5x  3
2x 1
x
.
x
a) Write this function as a piecewise function.
b) Find its domain and range.
27.
Simplify
f ( x  h)  f ( x )
where,
h
a) f(x) = 2x + 3
28.
b) f ( x) 
1
x 1
c)
f ( x)  x 2
The graph of y = f(x) is given as follows:
Graph the following functions.
a) f ( x  1)
c)
29.
b)
f ( x)  x( x 1)
a) The graph of a quadratic function has x-intercepts -1 and 3 and a range consisting of all numbers
less than or equal to 4. Determine the equation for this function.
y  2x2  4x  3 .
The following are parametric equations. Write as a single equation in x and y.
a)
32.
f ( x)
g ( x)  3x  2
b) Graph
31.
d)
Graph.
a)
30.
f ( x)
b) f ( x)
x  t 1

2
y  t t
 x  3 t  1
b) 
2
 y  t  t
c)
 x  sin t

 y  cos t
c)
f ( x)  x 2  2 x  1, x  0
Find the inverse of the functions:
a) f ( x)  2 x  3
b) f ( x) 
x2
5x 1
Are you ready for Calculus?
33.
A function f(x) has the graph to the right:
Sketch the graph of
34.
Page 5
f(x)
y=x
f 1 ( x) .
Express x in terms of the other variables in the picture.
a)
b)
x
r
h
x
h
r
t
t
35.
a) Find the ratio of the area inside the square but outside
the circle to the area of the square.
r
b) Find the formula for the perimeter of a window in the shape
of the picture below.
r
r
c) A water tank has the shape of a cone. The tank is 10 m high and has a radius of 3 m at the top. If
the water is 5 m deep (in the middle) what is the surface area of the top of the water?
d) A kite is 100 m above ground. If there is 200 m of string out, what is the angle between the string
and the horizontal? Assume the string is perfectly straight.
Are you ready for Calculus?
36.
Page 6
You should know the following trigonometric identities:
sin( x)   sin x
cos( x)  cos x
sin( x  y )  sin x cos y  cos x sin y
cos( x  y )  cos x cos y  sin x sin y
Use these to derive the following important identities, which you should also know.
a) sin x  cos x  1
b) sin 2x  2sin x cos x
2
2
c) cos 2 x  cos x  sin x
2
2
Answers. Remember, you will be held accountable for these concepts on Test #1. Come and get help if
necessary.
1. a)
x( x  3)
x4
b)
x4
x( x  1)
c)
2. a) 2 3  2 2 b) 1  5
c)
5x
5 x
7  2 15  3 3  5
11
2 2 1
ab
3
4. a) 1 b) -3/2 c) 8 d) 4/25, -4/25
5. a) log 2 5  x  1 b) log2 3 c) 25
3. a) 8a 6b 1
6. a)1/2
b) 3a1/ 2b3/ 2
b) -x
c)
d) ab 1 e) a 3/ 2b
f) a 5/ 6b1/ 2
c) log x 2
V  2bc
bcx
b) a 
2b  2c
cy  bz  bc

2x  y
e) d 
f) x 
1 
x  2y
7. a) a 
8. a) y  1   x  2 
2
9. a) x4  x  4 x  4
d)
3x  1
x
d)
c) r 
3
3
1
b) y     x  
8
2
2
2
2 h  4 2 h2  8 A
4
d) P 
2
1

c) x  10  9  y  
3

b)  2 x  5 2 x  5 x  2 c)  2 x  3  4 x 2  6 x  9 
 x  1 x  1  x 2  1
10. a) 0, 4, -4 b) 2, 5/2, -5/2 c) -3/2
 5 7 11
 5 

5
3
, ,
,
, ,
 2 n,
 2 ,
 2 n
11. a)
b)
c)
6 6 6 6
6 6
2
6
6
2
3
2
2
3



12. a) 
b) 
c) 
d) 
e)
f)
g)
h) 
4
2
2
2
2
3
3
13. graphs – verify your graphs on your calculator
3  6
14. a)
b) ½, -3
c) -1/2
2
A
1  nr
Are you ready for Calculus?
Page 7
a)-89 b) x 2
a) -1/4, 1/3 b) 1/3, -1/2 (double root)
a)  3,1 b)  , 2 / 3 1, ) c) all real numbers
a) 6, -10/3 b) 2, -6/5 c) 2, -4/3
7
3
19. a) y  3    x  1 b) y  2    x  1 c) y = 3
3
2
20. a) (2, -1) b) verify your graph with my key if you are unsure
15.
16.
17.
18.
21. a)
22. a)
 x  1   y  2   10
2
10
23. a) (9, 0)
2
2
1
5
2

b)  x     y  1 
2
4

1
 x  2
3
2
2
b)  x  5    y  3  25
b) y  5  
24. 8x 2  38x  9 y 2  20 y  43  0
25. a)
 , 2  1, 

b) i) D: all reals R:
7
ii) D:
 , 1/ 2 1/ 2, 
1, x  0
26. a) f ( x)  
b) D:  ,0 0,  R: 1,1
1, x  0
1
27. a) 2 b)
c) 2x + h
( x  h)( x  h  1)
28. verify your graphs with my key if you are unsure
29. graphs
30. a) y   x 2  2 x  3 b) graph
31. a) y  x 2  3x  2
b) y   x  1   x  1
6
3
c) x 2  y 2  1
x 3
x2
b) f 1 ( x) 
c) f 1 ( x)  1  x  2
2
5x  1
33. graph should be a reflection over the line y = x
rt  ht
rt
34. a) x 
b) x 
h
r 2  h2
32. a) f 1 ( x) 
4r 2   r 2
b) 4r  2 r
4r 2
36. derivations of identities
35. a)
c)
9
 m2
4
d) 30
R: all reals
Related documents