Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces Ilya Pavlyukevich Friedrich–Schiller–Universität Jena Markus Riedle King’s College London Workshop Stochastic Processes and Differential Equations in Infinite Dimensional Spaces London, 31.03–03.04.2014 – Typeset by FoilTEX – 1 1. Convolution integrals w.r.t. a Lévy process. Example I Mattingly, Suidan and Vanden–Eijnden (2007)[6]; P. and Sokolov (2008)[8]: Invinitely dimensional transport system perturbed by a one-dimensional Lévy process L “ pLtqtě0. l $ 1 2 1 9t ’ 9 a “ ´a ´ νa ` L ’ t t t ’ ’ &a9 2 “ a1 ´ a3 ´ νa2 t t t t ’ ¨¨¨ ’ ’ ’ %a9 n “ an´1 ´ an`1 ´ νan, t t t t ¨ , ˛ ν 1 0 0 ¨¨¨ ˚´1 ν 1 0 ¨ ¨ ¨‹ ‹ A“˚ ˝ 0 ´1 ν 1 ¨ ¨ ¨‚ ¨¨¨ ně1 a9 t “ ´Aat ` L9 te1, a0 “ 0. The explicit solution is a convolution integral żt ant Hnpt ´ sq dL9 s, “ 0 Jnp2tq ´νt Hnptq “ n e , t Jn, n ě 1, Bessel functions of the first kind. – Typeset by FoilTEX – 1 2 2. Convolution integrals w.r.t. a Lévy process. Example II Chechkin, Gonchar, Szydłowski, Physics of Plasmas (2002)[1]. L “ pLtqtě0 is an isometric α-stable Lévy process in R3, Ee ixu,Lt y “e ´t}u}α , u P R3 , α P p0, 2q. Langevin equation for a particle in an external magnetic field B and Lévy 9 electric field L: 1: X “ rX9 ˆ Bs ´ ν X9 ` L9 γ ą 0, γ or $ ˛ ¨ 9 “ γV, ’ X ’ ν ´B3 B2 & ´ ¯ V9 “ γ rV ˆ Bs ´ νV `L9 , A “ ˝ B3 ν ´B1‚ ’ looooooooomooooooooon ’ ´B2 B1 ν % “:´AV In other words, X is an integrated OU process: żt Xt “ γ Vs ds, 0 – Typeset by FoilTEX – żt Vt “ ´γ AVs ds ` Lt 0 2 3 3. Explicit solution Ornstein–Uhlenbeck process: żt Vt “ ´γ żt AVs ds ` Lt e´γ pt´sqA dLs Vt “ ñ 0 0 Integrated Ornstein–Uhlenbeck process (Fubini): ż t”ż s żt AVs ds “ γ AXt “ γ 0 0 ż t”ż t 0 “γ 0 ´1 ı Ae´γ ps´uqA dLu ds ı Ae´γ ps´uqA ds dLu u ż t´ “A A 1´e ´γ pt´uqA ¯ dLu 0 ż t´ ¯ 1 ´ e´γ pt´uqA dLu “ 0 Goal: limiting behaviour of X as γ Ñ 8, especially exit times. – Typeset by FoilTEX – 3 4 4. Convergence of f.d.d. Theorem 1. For any t ě 0 P AXt Ñ Lt, ! EeiupAXt´Ltq “ E exp ´ iu lim n “ lim n “ lim n n ź γ Ñ 8. n ÿ e´γ pt´sk qA∆Lsk k“1 ´γ pt´sk qA Ee´iue k“1 n ź e ) ∆Lsk › ›α ´γ pt´sk qA › › ∆sk ´ue k“1 ! “ exp lim n n ÿ › › ) › ´γ pt´sk qA›α ∆sk ›ue › k“1 ż t› › ! ) › ´γ pt´sqA›α α “ exp }u} ›e › ds Ñ 1, γ Ñ 8 0 loooooomoooooon Ñ0, s‰t, γ Ñ8 – Typeset by FoilTEX – 4 5 5. Behaviour of the paths Convergence of in a path space to ensure, for instance, convergence of exit times: ż t´ ¯ 1 ´ e´γ pt´sqA dLs, AXt “ Aą0 0 Dimension d “ 1 (see Hintze & P.[2]): 1 2 3 4 5 - 0.1 - 0.2 - 0.3 – Typeset by FoilTEX – 5 6 6. Dimension d “ 2 ż t´ AXt “ ¯ 1 ´ e´γ pt´sqA dLs 0 - 30 - 20 30 60 20 40 10 20 - 10 10 30 - 60 - 40 - 20 20 - 10 - 20 - 20 - 40 - 30 - 60 ˆ A“ νą0 – Typeset by FoilTEX – 20 ν 0 0 ν ˙ ˆ A“ 40 60 ˙ ν 0 , 0 µ ν, µ ą 0, 퉵 6 7 7. Dimension d “ 2 ż t´ AXt “ ¯ 1 ´ e´γ pt´sqA dLs 0 60 40 40 20 20 - 40 - 20 20 40 - 60 - 40 - 20 20 40 60 - 20 - 20 - 40 - 40 - 60 ˆ A“ 1 ´1 1 1 λ1,2 “ 1 ˘ i – Typeset by FoilTEX – ˙ ˆ A“ ˙ 1 ´3 3 1 λ1,2 “ 1 ˘ 3i 7 8 8. Dimension d “ 3 ż t´ AXt “ ¯ 1 ´ e´γ pt´sqA dLs 0 100 0 - 50 50 - 100 - 150 - 100 - 50 0 ¨ 0 ˛ ν ´B3 B2 ν ´B1‚, A “ ˝ B3 ´B2 B1 ν ν “ 1, B “ p2, ´3, 1q – Typeset by FoilTEX – 8 9 9. Setting and goals (R. & P., arXiv:1311.1342[7]) Let U, V be separable Hilbert spaces, LpU, V q the space of bounded linear operators with the norm } ¨ }U ÑV . L be a U -valued Lévy process and żT ! ) 2 2 H pU, V q :“ F : r0, T s Ñ LpU, V q : F measurable and }F psq}U ÑV ds ă 8 0 For càdlàg F, tFγ uγ ą0 Ă H2pU, V q consider convolution integrals żt F ˚ Lptq “ żt F pt ´ sq dLpsq and Fγ ˚ Lptq “ 0 Fγ pt ´ sq dLpsq. 0 Goal: convergence in probability in an appropriate path space F ˚ Lp¨q Ñ Fγ ˚ Lp¨q from the convergence F p¨q Ñ Fγ p¨q, γ Ñ 0. – Typeset by FoilTEX – 9 10 10. OU-process in dimension 1 ´ ¯ Fγ ptq “ 1 ´ e´γt Ir0,8qptq F ptq “ Ip0,8qptq żt Fγ ˚ Lt “ p1 ´ e´γ pt´sqq dLpsq 0 żt żt Ir0,tqpsq dLpsq “ F ˚ Lt “ Lt´ Ip0,8qpt ´ sq dLpsq “ Ñ 0 0 limPp|Lt´h ´ Lt| ą εq Ñ 0 (stochastic continuity) hÓ0 1 2 3 4 5 - 0.1 - 0.2 - 0.3 – Typeset by FoilTEX – 10 11 11. Skorohod M1-covergence in R (I) For x P Dpr0, T s, Rq define a completed graph Γx: Γx :“ tpx0, 0qu Y tpz, tq P R ˆ p0, T s : z “ cxt´ ` p1 ´ cqxt for some c, c P r0, 1su, Γx Ă R2. x Γx 0 T 0 T Natural order on Γx: pz, tq ď pz 1, t1q – Typeset by FoilTEX – if t ă t1 or t “ t1 and |xt´ ´ z| ď |xt´ ´ z 1|. 11 12 12. Skorohod M1-convergence II Parametric representation of Γx: continuous nondecreasing w.r.t. order mapping pzu, tuq : r0, 1s Ñ Γx. Denote Πx the set of all parametric representations of Γx. Skorohod M1-convergence on Dpr0, T s, Rq: xn Ñ x ô for any pz, tq P Πx there is pz n, tnq Ă Πxn such that ! ) max sup |zun ´ zu|, sup |tnu ´ tu| Ñ 0, n Ñ 8. uPr0,1s uPr0,1s This topology in metrizable and the space DpR`, R; M1q is Polish (see Whitt, Chapter 12.8). Weak convergence in DpR`, Rd; M1q, see Whitt[10], Chapter 12. Weak J1, J2, M1, M2 convergences in Dpr0, T s, Rq, see Skorohod[9]. – Typeset by FoilTEX – 12 13 13. M1-convergence in probability in infinite dimensions. Strong M1-convergence Let V be a Hilbert (Banach) space, f1, f2 P Dpr0, T s, V q. Define a completed graph and a parameterization of fi as in R1, and ! ) dM pf1, f2q :“ inf |r1 ´ r2|8 _ }u1 ´ u2}V : pri, uiq P Πpfiq, i “ 1, 2 . Strong M1-convergence in probability: for Xn, X càdlàg, V -valued stochastic processes on a common probability space Xn P,M1 -strongly Ñ X if P dM pXn, Xq Ñ 0 – Typeset by FoilTEX – 13 14 14. Weak M1-convergence Weak M1-convergence in probability: for Xn, X càdlàg, V -valued stochastic processes on a common probability space Xn P,M1 -weakly Ñ X if for any v P V P dM pxXn, vy, xX, vyq Ñ 0 – Typeset by FoilTEX – pin R1q 14 15 15. Product M1-convergence Let e “ tek ukě1 be a orthonormal basis in V . Consider an e-dependent metric 8 ÿ 1 dM pxf, ek y, xg, ek yq deM pf, gq “ k 1 ` d pxf, e y, xg, e yq 2 M k k k“1 Pointwise convergence: deM pfn, f q Ñ 0 ô for any k ě 1 dM pxfn, ek y, xf, ek yq Ñ 0 For Xn, X càdlàg, V -valued stochastic processes on a common probability space, a basis e, Xn P,e-product Ñ X ô P deM pXn, Xq Ñ 0 Relations between the modes of convergence: strong M1 ñ weak M1 looooooooooooooooomooooooooooooooooon ñ product M1 coinside in finite-dimensional spaces – Typeset by FoilTEX – 15 16 16. A convenient convergence criterium Recall: weak convergence in R1 Xn ñ X ô # a) convergence of f.d.d. b) tightness Tightness in terms of the oscillation function: For x, y P R (or P V) consider the straight line segment vx, yw :“ tz P R : z “ x ` cpy ´ xq, c P r0, 1su. M1-oscillation function M : R3 Ñ r0, 8q, (V3 Ñ r0, 8q) # M px1, x, x2q :“ mint|x ´ x1|, |x2 ´ x|u, 0, x P vx1, x2w, M pf, δq :“ sup if x R vx1, x2w, M pf pt1q, f ptq, f pt2qq. 0ďt1 ătăt2 ďT,t2 ´t1 ďδ Tightness follows from – Typeset by FoilTEX – lim lim sup PpM pXn, δq ě εq “ 0. δ Ó0 nÑ8 16 17 17. Strong M1-convergence in probability Theorem. Let X, Xn, n ě 1, be stochastically continuous V-valued càdlàg processes, t P r0, T s. Then the following conditions are equavalent: 1. Xn P,M1 -strongly Ñ X in Dpr0, T s, Vq 2. the following two conditions are satisfied: (a) for any t P r0, T s P Xnptq Ñ Xptq; (b) for every ε ą 0 the oscillation function obeys lim lim sup PpM pXn, δq ě εq “ 0, δ Ó0 where M pf, δq “ nÑ8 sup M pf pt1q, f ptq, f pt2qq. 0ďt1 ătăt2 ďT,t2 ´t1 ďδ – Typeset by FoilTEX – 17 18 18. Product M1-convergence in probability (II) Proof: check the definition, construct appropriate parameterizations... Compare with the result by A. Jakubowski (Tightness criteria for random measures with application to the principle of conditioning in Hilbert spaces, 1988)[3]. – Typeset by FoilTEX – 18 19 19. Product M1-convergence in probability Theorem. Let X, Xn, n ě 1, be stochastically continuous V-valued càdlàg processes, t P r0, T s, e “ tek ukě1 a orthonormal basis in V . Then the following conditions are equavalent: 1. Xn P,e-product Ñ X in Dpr0, T s, V; deM q 2. the following two conditions are satisfied for every k ě 1: (a) for any t P r0, T s P xXnptq, ek y Ñ xXptq, ek y; (b) for every ε ą 0 the oscillation function obeys lim lim sup PpM pxXn, ek y, δq ě εq “ 0, δ Ó0 nÑ8 where M pf, δq “ sup M pf pt1q, f ptq, f pt2qq in R1. 0ďt1 ătăt2 ďT,t2 ´t1 ďδ – Typeset by FoilTEX – 19 20 20. Weak M1-convergence in probability Theorem. Let X, Xn, n ě 1, be stochastically continuous V-valued càdlàg processes, t P r0, T s. Then the following conditions are equavalent: 1. Xn P,M1 -weakly Ñ X in Dpr0, T s, Vq 2. the following two conditions are satisfied for every v P V: (a) for any t P r0, T s P xXnptq, vy Ñ xXptq, vy; (b) for every ε ą 0 the oscillation function obeys lim lim sup PpM pxXn, vy, δq ě εq “ 0, δ Ó0 nÑ8 where M pf, δq “ sup M pf pt1q, f ptq, f pt2qq in R1. 0ďt1 ătăt2 ďT,t2 ´t1 ďδ – Typeset by FoilTEX – 20 21 21. Weak M1-convergence of convolution integrals Theorem. Let L be a U -valued Lévy process. Let F, Fγ P H2pU, V q, γ ą 0, be functions satisfying piq F ˚p¨qv, Fγ˚ p¨qv P Dpr0, T s; U q for all v P V and γ ą 0; piiq sup }xFγ p¨qu, vy}8 ă 8 for all u P U, v P V ; γ ą0 piiiq lim sup sup αÑ0 pivq lim dM γ Ñ8 8 ÿ γ ą0 j “1 ` }xFγ˚ p¨qv, iαhα j y}T V2 “ 0 ˘ xFγ p¨qu, vy, xF p¨qu, vy “ 0 for all v P V ; for all u P U, v P V. Then ´ż t 0 ¯ Fγ pt ´ sqLpsq tPr0,T s ´ż t Ñ 0 ¯ F pt ´ sqdLpsq tPr0,T s M1-weakly in probability in Dpr0, T s, V q. – Typeset by FoilTEX – 21 22 22. Idea of the proof 0. General assumptions: F ˚ L and Fγ ˚ L have cadlag paths; F ˚ W has continuous paths. 1. Fix v P V and consider a real-valued processes ż ż @ t D @ t D Xγ ptq :“ Fγ pt ´ sq dLpsq, v , Xptq :“ F pt ´ sq dLpsq, v . 0 0 Xγ , X are stochastically continuous. 2. Convergence of marginals in probability follows directly from the estimates of characteristic functions. 3. Decompose L “ W ` ξα ` ηα W is a Q-Brownian motion ξα is a Lévy martingale with }∆ξαptq}U ď α ηα is a cPP with drift. 4. Xγ “ Cγ ` Aγ ` Bγ . 5. Condition (iv) guarantees the convergence of the oscillation function of Cγ (use Borell’s inequality). – Typeset by FoilTEX – 22 23 6. Small jump part: For ξα define a covariance operator Rα by xRαu, u1y :“ Exξαp1q, uyxξαp1q, u1y. R is positive semidefinite and symmetric; there is another separable Hilbert space Hα and embedding iα : Hα Ñ U such ş that Rα “ iαi˚α. and }i˚αu}Hα “ xRαu, uy ď }u}2 }r}ďα νpdrq Ñ 0, α Ó 0. α ˚ α α Choose a basis thα u in H and u P U with i u “ h k ě 1 α α k k k k . Then ξαptq “ 8 ÿ α iαhα k xξα ptq, uk y k“1 where lkα “ xξαptq, uα k y are uncorrelated real-valued LP. 7. Use a generalization of the estimates by Marcus and Rosiński (2003[4], 2005[5]): let f P H2pU, Rq, then 8 ˇż t ˇ ÿ ? ˇ ˇ E sup ˇ f pt ´ sq dξ αpsqˇ ď κ 2T }xf p¨q, iαhα k y}T V2 , tPr0,T s 0 k“1 ? ż 1a κ “ 32 2 lnp1{sq ds. 0 – Typeset by FoilTEX – 23 24 8. Compound Poisson part. Aγ ptq “ N ptq ÿ xFγ˚ pt ´ τj qv, ∆ηαpτj qyIrτj ,8qptq. j “0 Due to the absolute continuity of τj , the summands Rj pωq “ xFγ˚ pt ´ τj pωqqv, ∆ηαpτj pωqqyIrτj pωq,8qptq have common points of discontinuity with probability 0 and the M1-convergence follows and. Nÿ pt,ω q xFγ˚ pt M1 ,R1 ´ τj pωqqv,∆ηαpτj pωqqyIrτj pωq,8qptq Ñ j “0 Nÿ pt,ω q xF ˚pt ´ τj pωqqv, ∆ηαpτj pωqqyIrτj pωq,8qptq j “0 – Typeset by FoilTEX – 24 25 25. Integrated Ornstein–Uhlenbeck process V separable Hilbert space, A a generator of a strongly continuous semigroup S “ pStq in V , U another separable Hilbert space, L a Lévy process in U , G a bounded linear operator G : U Ñ V . Consider żt żt AY psq ds ` GLptq Y ptq “ γ ñ Spt ´ sqG dLpsq, Y ptq “ 0 0 żt Y psq ds Xptq “ γ 0 Theorem. Assume that the semigroup is diagonalizable, i.e. there is a ONB e “ tek ukě1 in V such that Sptqek “ e´λk tek , t ě 0, k ě 1, and inf k λk ą 0. Then P AX Ñ ´GL in the deM1 -product topology in Dpr0, T s, V q. – Typeset by FoilTEX – 25 26 References [1] A. V. Chechkin, V. Yu. Gonchar, and M. Szydłowski. Fractional kinetics for relaxation and superdiffusion in a magnetic field. Physics of Plasmas, 9(1):78–88, 2002. [2] R. Hintze, and I. Pavlyukevich. Small noise asymptotics and first passage times of integrated Ornstein–Uhlenbeck processes driven by α-stable Lévy processes. Bernoulli, 20(1), 265–281, 2014. [3] A. Jakubowski, A. Tightness criteria for random measures with application to the principle of conditioning in Hilbert spaces. Probability and Mathematical Statistics, 9(1), 95–114, 1988. [4] M. B. Marcus and J. Rosiński. Sufficient conditions for boundedness of moving average processes. In Stochastic inequalities and applications, vol. 56 of Progress in Probability, Birkhäuser, 113–128, 2003. [5] M. B. Marcus and J. Rosiński. Continuity and boundedness of infinitely divisible processes: A Poisson point process approach. Journal of Theoretical Probability, 18(1), 109–160, 2005. [6] J. C. Mattingly, T. M. Suidan and E. Vanden–Eijnden Anomalous dissipation in a stochastically forced infinite-dimensional system of coupled oscillators. The Journal of Statistical Physics, 128(5), 1145–1152, 2007. [7] I. Pavlyukevich and M. Riedle. Non-standard Skorokhod convergence of Lévy-driven convolution integrals in Hilbert spaces, http://arxiv.org/abs/1311.1342 [8] I. Pavlyukevich and I. M. Sokolov One-dimensional space-discrete transport subject to Lévy perturbations, The Journal of Statistical Physics, 133(1), 205–215, 2008. [9] A. V. Skorohod. Limit theorems for stochastic processes. Theory of Probability and its Applications, 1:261–290, 1956. [10] W. Whitt. Stochastic-process limits: an introduction to stochastic-process limits and their application to queues. Springer, 2002. – Typeset by FoilTEX – 26