* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Training
		                    
		                    
								Survey							
                            
		                
		                
                            
                            
								Document related concepts							
                        
                        
                    
						
						
							Transcript						
					
					THE SKELETON CHAPTER 7 Introduction    A strong, yet light, internal support for the human body The skeleton is adapted for the protection, locomotor, and manipulative functions The upright stance increases the ability of the skeletal muscle to resist gravity Introduction    The skeleton maintains its upright position through a series of compensating curves The skeleton accounts for approximately 20% of the body mass The 206 bones of the body are grouped into the axial and appendicular skeleton Introduction Axial skeleton  Forms the long axis of the body  80 bones in three major regions – skull – vertebral column – bony thorax • Ribs • Sternum Appendicular  Bones of upper & lower extremities and girdles  126 bones in three major regions – Girdles • Shoulder girdle • Pelvic girdle – upper extremity – lower extremity THE SKULL SECTION I The Skull     The skull is the body’s most complex bony structure It is formed by two sets of bones, the 8 cranial bones and the 14 facial bones These 22 bones combine to form the cranial cavity and the facial features In addition, there are 3 bones in each inner ear to assist in sound transmission The Skull: Introduction  The bones of the skull provide . . . – A case to house the brain, the cranium – A framework for the face – Cavities to house the organs of sight, taste, and smell – Passages for air and food – Attachment sites for the teeth – Attachment sites for muscle The Skull: Introduction    Most bones of the skull are flat bones Except for the mandible, all bones are firmly united by interlocking sutures The major sutures of the skull are . . . – – – –  Coronal Sagittal Squamosal Lambdoidal (Between Frontal & Parietal) (Between Parietal bones) (Between Parietal & Temporal) (Between Parietal & Occipital) Other skull sutures connect facial bones and are named after these structures ________ ________ Sagittal Coronal Lambdoid Squamous Overview of Skull Geography   Facial bones form the anterior aspect The cranial bones enclose the brain Vault   The cranial vault or calvaria forms the superior, lateral, and posterior aspects of skull The cranial base forming the inferior aspect of skull Cranial Base     Cranial base forms the skull’s inferior aspect Three prominent ridges divide the base into fossae The brain rests on these cranial fossae completely enclosed by the cranial vault The brain occupies the cranial cavity Cavities of the Skull  In addition to the large cranial cavity there are many smaller cavities – – – – Middle and inner ear cavities Nasal cavity Orbits of the eyes Several bones contain air filled sinuses • Sinuses surrounding the nasal cavity are referred to as the paranasal sinuses Study Note   As you read about the bones of the skull, locate each bone on the different skull views in Figures 7.2, 7.3, 7.4 The skull bones and their important markings and features are summarized in Table 7.1 on pages 213-214 Cranium   The 8 cranial bones include; 2 parietal, 2 temporal frontal, occipital, sphenoid, ethmoid Cranium is self- bracing allowing the bones to be thin, yet strong Frontal bone  Forms the anterior portion of the cranium, the forehead, roofs of the orbits, and most of the anterior cranial fossa Frontal bone - landmarks        Frontal squama Supraorbital margins Supraorbital foramen Orbits Anterior cranial fossa Glabella Frontal sinuses Parietal bones   Forms most of the superior & lateral aspects of the skull Articulates with other cranial bones to form four major sutures Parietal Parietal bones - landmarks  The four largest sutures cranial sutures, Coronal, Sagittal, Lambdodial, Squamosal Occipital bone     Forms most of the posterior wall and base of skull Articulates with parietal & temporal Joins w/ sphenoid in the cranial floor Forms internal walls of posterior cranial fossa Occipital bone Ext. landmarks  Foramen magnum, Occipital condyles, External occipital protuberance, Nuchal lines, External occipital crest Occipital bone - Int. landmarks  Hypoglossal canal, Posterior cranial fossa Temporal Bone    Forms the inferolateral aspects of the skull Parts of the cranial floor Divided into four regions; squamous tympanic, mastoid, and petrous-(int) Temporal Bone   The internal petrous region contributes to the cranial base The petrous region and the sphenoid bone form the middle cranial fossa Temporal Bone - landmarks  Zygomatic process – Meets the zygomatic bone – Forms the cheek  Mandibular fossa – Receives condyle of mandible Temporal Bone - landmarks  External Auditory Meatus – Middle and inner ear  Styloid process – Muscle of tongue  Mastoid process – Muscles of neck Temporal bones - landmarks  Jugular foramen – Entry point for the Jugular artery  Internal acoustic meatus – Entry point for the auditory nerve Jugular Foramen Temporal bones - landmarks  Stylomastoid foramen – exit for facial nerve  Carotid canal – entrance for the carotid artery which supplies blood to cerebral hemispheres Sphenoid bone    Bone spanning the width of middle cranial fossa Articulates as central wedge of all cranial bones Consists of central body and three processes; greater and lesser wings and pterygoid process (pos. view) Sphenoid - landmarks      Sella turcica (enclosure for pituitary gland) Optic foramina (passage of optic nerves) Superior orbital fissure (Nerves III, IV, V enter orbit) Foramen rotundum & ovale (Cranial Nerve V to face) Foramen spinosum (Middle meningeal artery) Ethmoid bone    Forms most of the area between the nasal cavity & orbits of eyes Lies between nasal bones & sphenoid Complex shape gives rise to nasal septum, sinuses and cribiform plate Ethmoid bone - landmarks  Cribiform plates – Forms roof of nasal cavity  Olfactory formina – Olfactory nerves enter brain  Crista galli – Attachment of the dura mater which secures brain in cavity Ethmoid bone - landmarks  Perpendicular plate – Forms superior part of nasal septum  Lateral mass – House ethmoid sinuses  Nasal concha – Project into nasal cavity  Orbital plates – Medial walls of orbits Facial bones   Consists of 14 bones w/ only mandible and vomer unpaired Others include maxillae, lacrimals, nasals, zygomatics, inferior nasal conchae, and palatines (not pictured) Mandible     Forms the lower jaw Largest, strongest bone of the face It has a body and two upwardly projecting sections called rami Houses lower dentition Mandible - landmarks         Mandibular angle Mandibular notch Coronoid process Mandibular condyle Alveolar margin Mandible formina Mental formina Ramus of mandible Maxillary bone      Forms upper jaw and central portion of facial skeleton Fused medially Articulates with all facial bones except mandible Upper dentition Forms 2/3 of hard palate of the mouth Zygomatic process Maxillary bone Maxillary bones - landmarks  Alveolar margin – Upper dentition  Frontal process – Forms lateral aspects of nose  Zygomatic process – Articulates with zygomatic bone  Maxillary sinuses – (Fig. 7.11) Maxillary bones - landmarks  Palatine processes – Forms roof of mouth  Incisive fossa – Passage of nerves and blood vessels  Infraorbital foramen – Infraorbital nerve and blood vessel to face Palatine Process Maxillary bones - landmarks  Inferior orbital fissure – Located deep within the orbit – Permits passage of the zygomatic nerve, maxillary nerve, and blood vessels to reach face Zygomatic bones    Commonly called the cheekbones Form prominences of cheeks and inferolateral margins of orbits Articulate with the Zygomatic process of temporal bone and Zygomatic process of maxallae Zygomatic Process of Temporal Zygomatic bone Nasal bones      Forms bridge of the nose Thin, rectangular shape Fused medially Articulate with the frontal bone and maxillary bones laterally Nasal cartilages – (Fig. 6.1) Lacrimal Bones    Forms part of the medial border of each orbit Articulates with frontal, ethmoid & maxillae Forms part of Lacrimal fossa – Permits tears to drain from orbit to nasal cavity Lacrimal Bones  Lacrimal fossa – Permits tears to drain from orbit to nasal cavity Palatine bones   The horizontal plates forms the posterior portion of hard palate Vertical plate forms part of the posterolateral wall of nasal cavity and a small portion of orbit Palatine bones - landmarks  Horizontal plate – Posterior section of hard palate  Vertical plate – Part of the posteriolateral walls of nasal cavity  Orbital surface – Part of inferior medial aspect of orbit Vomer   Forms part of the nasal septum Discussed with the nasal cavity Vomer - landmarks  Plow shape – Divides nasal septum into right and left parts Inferior Nasal Conchae    Form lateral walls of nasal cavity Project medially from the lateral walls of nasal cavity Largest of nasal conchae Inferior Nasal Conchae - Landmark   The Inferior nasal conchae is just one of three in the nasal cavity Superior and middle concha are on the Ethmoid bone The Orbits      The orbits are bony cavities within which the eyes are encased and cushioned by fatty tissue The muscles that move the eyes and the tear producing lacrimal glands are housed within the orbit Formed by frontal, sphenoid, maxilla, zygomatic, lacrimal palatine & ethmoid Contain superior & inferior orbital fissures Optic foramina The Orbits Nasal cavity     The nasal cavity is constructed of bone and hyaline cartilage The cavity is divided into right and left parts by the nasal septum Superior, middle and inferior nasal concha project into the cavity The nasal septum and conchae are lined with mucus-secreting mucosa Nasal cavity   Roof of the cavity is the cribriform plates of ethmoid Lateral walls are the superior, middle, and inferior conchae, and vertical plates of palatines Cribriform plate Nasal cavity   Floor of cavity is formed by palatine processes of the maxillae and the palatine bones Septum is formed by vomer and the perpendicular plate of ethmoid Paranasal sinuses     Five skull bones; frontal, sphenoid, ethmoid, and the paired maxillary contain mucus-lined, air-filled sinuses Cluster around nasal cavity Connected to nasal cavity to allow air to enter and mucus to drain Lighten skull, warm and humidify air, enhance voice resonance Paranasal sinuses  Note positioning around nasal cavity Paranasal sinuses     Sphenoid sinus Frontal sinus Ethmoid sinus Maxillary sinuses Hyoid bone     Not really a part of the skull, it is unique in that it is the only bone that does not articulate with any other bone Positioned just inferior to the mandible Anchored by stylohyoid ligaments to the styloid processes of temporal bone Acts as a movable base for the tongue Hyoid bone  Body – Neck muscle attachment  Greater horn – Neck muscle attachment  Lesser horn THE VERTEBRAL COLUMN SECTION II Vertebral Column: General Characteristics         Formed from 26 irregular bones It contains four distinct curvatures It provide axial support for the trunk Transmits weight of trunk to lower limbs Protects spinal cord Attachment site for ribs and muscles Separated by intervertebral discs There are 24 vertebrae, a sacrum (5 fused) and a coccyx (4 fused) General Characteristics  Alignment – Anterior/ posterior – Lateral  Curvatures – Compensatory curves  Features – Weight bearing – Muscle attachment – Protection Regional Characteristics  Cervical C1-C7 – Neck / movable  Thorasic T1-T12 – Rib cage / limited movement  Lumbar L1-L5 – Low back / movable  Sacral 5 fused – Joins the pelvis  Coccyx 4 fused – Terminus Clinical deviations  Scoliosis – An abnormal lateral curvature of the spinal column – Curvature can occur in an “S” or “C” deviation Clinical deviations  Kyphosis – An exaggerated dorsal curvature in the dorsal region – Common is aged individuals because of osteoporosis Clinical deviations  Lordosis – Accentuated lumbar curvature – Being overweight or pregnant causes an excessive load up front Curves develop in response to: Upright posture Weight bearing Musculature Characteristics - Ligaments  Ligaments hold the vertebral column in an upright position – The broad Anterior Longitudinal Ligament prevents hyperextension and is quite strong – The cord like Posterior Longitudinal Ligament prevents hyperflexion and is relatively weak Characteristics - Ligaments  Ligaments also connect specific vertebra and support disc position – Supraspinos ligament – Ligamentum flavum – Interspinous ligament Intervertebral Discs     Intervertebral discs are cushion like pads interposed between vertebra The discs provide elasticity and compressibility Compression flattens discs Discs are thickest in the cervical and lumbar to provide flexibility Characteristics - discs  Annulus fibrosus surrounds the outer margin – Collagen fibers   Nucleus pulposus is the semi fluid substance which shifts under body weight & pressure Herniation of disc Herniation of disk General structure of vertebrae  Common pattern – Body or centrum – Vertebral arch • lamina • pedicle – Vertebral foramen – Spinous process • Muscles attach – Transverse process • Muscles attach General structure of vertebrae  Interlocking pattern – Superior and inferior processes interlock – The inferior from above and the superior from the vertebrae below form a movable joint – The movement contributes to spinal rotation Superior Articular Process General structure   Pedicles have notches on their superior and inferior borders Lateral openings are called intervertebral foramen – Spinal nerves from spinal cord exit through these foramina Regional Characteristic: Cervical     Body is oval, but wide side to side C3 - C7 Spinous process is short and bifid (split) except in C7 Vertebral foramen is triangular Transverse processes contain foramina for blood vessels leading to brain Cervical Vertebrae C1 and C2      The first two cervical vertebrae are named the atlas and axis respectively There is no intervertebral disc between them They are highly modified for carrying the skull on top of the vertebral column The atlas (C1) functions are a cradle to support the head The axis (C2) functions as a pivot point for the rotation of the atlas Cervical Vertebrae C1  Lateral masses articulates with the occipital condyles of the skull Cervical Vertebrae C1 Body of the Vertebrae is missing  Inferior articular surface articulates with C2 below Cervical Vertebrae C2   The axis has the odontoid process or dens is its unique feature The dens is the missing body of the atlas which fuses with the atlas during embryonic development Regional Characteristic: Cervical     Spinous processes project directly posteriorly Superior facets directed superoposteriorly Inferior facets directed inferoanteriorly Flexion/extension, lateral flexion and rotation Regional Characteristic: Thoracic     Body is larger than cervical; heart shaped Spinous process is long and sharp Vertebral foramen is circular Transverse processes project posteriorly and bear facets for ribs Regional Characteristic: Thoracic      Body bears two costal demifacets Spinous processes projects inferiorly Superior facets directed posteriorly Inferior facets directed anteriorly Rotation, limited lateral flexion, flexion/extension prevented Regional Characteristic: Lumbar     Body is massive and kidney shaped Spinous processes are short and blunt Vertebral foramen is triangular Transverse processes are perpendicular to spinous process but has no special features Regional Characteristic: Lumbar     Spinous process projects posteriorly Superior facets directed medially Inferior facets directed laterally Flexion/extension, some lateral flexion, rotation prevented Sacrum      The triangular shaped structure formed by five fused vertebrae Forms the posterior wall of the pelvis Articulates with L5 of the vertebral column Articulates with the iliac bone of the pelvic girdle Transfers the weight of the upper torso and limbs to the lower extremities Sacral   Ala are fused remnants of transverse processes that articulate with hip bones to form the sacro iliac joints of the pelvis Sacral promontory – Center of gravity is 1 cm posterior of this point   Transverse line are sites of vertebral fusion Sacral foramina transmit blood vessels and nerves Ala Sacral promontory Sacral     On the posterior aspect median sacral crest are fused spinous processes The vertebral canal continues inside the sacrum as the sacral canal Sacral hiatus is at the inferior end of the sacral canal Superior articular surface form a joint with the spinal column Coccyx  Coccyx articulates with sacrum The Bony Thorax  The thorax is the chest which includes – Thoracic vertebrae posteriorly – The ribs laterally – The sternum and costal cartilages anteriorly   It is cone shaped with its broad opening inferiorly The thorax forms a bony cage around the heart, lungs and major blood vessels Functions of The Bony Thorax    Protection Attachment point for muscles of the back, chest, and shoulders The intercostal muscles attach to the thorax to lift and depress the thorax during respiration The Sternum   The sternum lies in the anterior midline of the thorax It is three fused bones – Manubrium • Jugular notch • Clavicular notch – Sternal body • Sternal angle – Xiphoid process • Xiphisternal joint Bony Thorax    Thorax is the chest and its bony underpinnings is called the thoracic cage Elements consist of the thoracic vertebrae, ribs, sternum, and costal cartilages which secure ribs to the sternum A cone opening inferiorly, the thorax provides a protective cage around the vital organs of the thoracic cavity (heart, lungs, great blood vessels) Bony Thorax - continued    Provides support for the shoulder girdles Bony attachment points for muscles of the back, chest and shoulders Intercostal spaces between ribs are occupied by the intercostal muscles which lift and depress the thorax during breathing Sternum      Located on the anterior midline of the thorax Consists of three fused bones; manubrium, body, and xiphoid process Manibrium articulates with clavicle & 2 ribs Body with ribs 2 - 7 Xiphoid attachment site for abdominal muscle Thorax to Vertebral Column Ribs Ribs       Twelve pairs forming thoracic cage All attach posteriorly to thoracic vertebrae Curve inferiorly toward anterior body surface Ribs 1-7 attach directly to sternum by separate costal cartilages and are referred to as true ribs Ribs 8-10 attach indirectly to sternum by attaching to costal cartilages immediately above Ribs 11-12 have no anterior attachments and are referred to as floating ribs Ribs     Ribs are bowed flat bones Long shaft Tear drop shaped with a costal groove on inner surface Head of rib has 2 facets to articulate with its vertebrae as well as the one above Ribs     Neck is just beyond the head Angle of rib Costal cartilages attach rib to sternum Attachments are secure but flexible Ribs    Tubercle of rib articulates with transverse process Ligaments secure rib to transverse process Note how the transverse processes of thoracic vertebrae are angled posteriorly The Appendicular Skeleton     Appended to the axial skeleton Pectoral girdle is for manipulation and is a lighter, less heavily reinforced structure Pelvic girdle is for weight bearing and locomotion and is a heavier, more robust structure Differences appear in bone structure, joint structure, ligaments, and muscle
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            