Download Week 17 Warm-up

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
13.1 Right Triangle Trigonometry
©2002 by R. Villar
All Rights Reserved
Right Triangle Trigonometry
Let’s consider a right triangle, one of whose acute angles is

The three sides of the triangle are the hypotenuse, the side
opposite  , and the side adjacent to  .
Ratios of a right triangle’s three sides are
used to define six trigonometric functions:
hypotenuse
sine, cosine, tangent,
cosecant, secant, and cotangent
opposite

Right Triangle Definition of Trig Functions
Let  be an acute angle of a right triangle.
sin  = opp
hyp
cos  = adj
hyp
tan  = opp
adj
csc  = hyp
opp
sec  = hyp
adj
cot  = adj
opp
adjacent
Example:
Evaluate the six trigonometric functions of the
angle  shown.
Use the Pythagorean Theorem to find the
length of the adjacent side…
a2 + 122 = 132
a2 = 25
a=5
adj = 5
opp = 12
hyp = 13
12
13

sin  = opp
hyp
=
12
13
cos  = adj = 5
13
hyp
tan  = opp = 5
12
adj
csc  = hyp
opp
=
13
12
sec  = hyp =
adj
cot  = adj =
opp
13
5
12
5
Example: Given cos  = 4/5 , find cot  .
Since cos  = adj = 4 , the triangle looks like this…
hyp
5
5

Use the Pythagorean Theorem to find the
length of the opposite side…
a2 + 42 = 52
a2 = 9
a=3
adj = 4
opp = 3
hyp = 5
cot

= adj =
opp
4
3
4
The angles 30º , 45º , and 60º occur frequently in trigonometry.
Use the triangle to find the trig. functions when
 = 30º
adj =
3
opp = 1
hyp = 2
30º
2
3
1
sin 30º = opp =
hyp
1
2
cos 30º = adj  3
2
hyp
tan 30º = opp  1  3
3
3
adj
csc 30º = hyp =
opp
2
1
2 3
sec 30º = hyp  2

3
3
adj
cot 30º = Remember,
adj  3 the radical
in
the denominator
1
opp
must be simplified.
Notice that the same triangle can be used when the acute angle is 60º :
Use the triangle to find the trig. functions when
 = 60º
adj = 1
opp = 3
hyp = 2
2
3
60º
1
sin 60º = opp  3
2
hyp
cos 60º = adj =
hyp
csc 60º = hyp  2 2 3

3
3
opp
sec 60º = hyp =
adj
tan 60º = opp  3
1
adj
1
2
2
1
1
cot 60º = adj
3


opp
3
3
What if the acute angle is 45º ?
Use the triangle to find the trig. functions when
 = 45º
adj = 1
opp = 1
hyp =
2
2
1
45º
1
sin 45º = opp  1  2
2
2
hyp
2
1
cos 45º = adj


2
hyp
2
tan 45º = opp  1  1
adj 1
2
csc 45º = hyp

1
opp
sec 45º = hyp  2
1
adj
cot 45º = adj  1  1
opp 1
You will need to remember how to re-create these triangles.
Related documents