Download FEE_Workshop_Kaufmann

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Singe Photon Imaging –
From X-rays to Visible Light
Rolf Kaufmann
CSEM Zurich
Technoparkstrasse 1
8005 Zurich
Switzerland
rolf.kaufmann@csem.ch
Inspired by Particle Physics
• Single particle detection is necessary
• Pulse counting circuits are the normal way to do this
in semiconductor detectors
• Vast experience with different circuit architectures
Copyright 2011 CSEM | Rolf Kaufmann | Page 1
Different Situation for Visible Light Imaging
• Photons have 1 – 3 eV energy
• Only 1 electron-hole pair per photon
• For single photon counting, noise
would have to be below 1 electron
• The “holy grail” of image sensing
Copyright 2011 CSEM | Rolf Kaufmann | Page 2
But First Back to X-rays
• Photon counting already established
• Medipix, .....
• Already commercial products available
e.g. from
• Dectris
• Sectra
• PANalytical
Copyright 2011 CSEM | Rolf Kaufmann | Page 3
CSEM Low-Noise Pulse-Detection Pixels
Noise Challenge of Single-Photon X-Ray Sensing
C. Lotto:
Synchronous and asynchronous detection of
ultra-low light levels using
CMOS compatible semiconductor technologies
• Classical charge amplifier / shaper architecture
• Shaper works as a band-pass filter
• Noise contributions:
Feedback resistor
qENC 
1
Rf
PhD Thesis (2010)
University of Neuchâtel
Amplifier
qENC  C f  Cin 
1
gm
Copyright 2011 CSEM | Rolf Kaufmann | Page 4
CSEM Low-Noise Pulse-Detection Pixels
Improved Band-Pass Filter
• High feed-back resistor Rr
• Low capacitances Cin and Cf
• Resistor implementations: MOS transistors in weak inversion
• Resitance approx. constant since no amplification between S/D
• Amplifier as a source follower (no Miller effect)
Rr
sense
node
1
Cs
Copyright 2011 CSEM | Rolf Kaufmann | Page 5
CSEM Low-Noise Pulse-Detection Pixels
Transistor Level Circuit
Rr
Rhp
Chp
gmlp
Cs
Vbias
Feedback resistor
qENC 
1
Rr
Clp
Amplifier
qENC  Cs
Chp
1
and Clp
Copyright 2011 CSEM | Rolf Kaufmann | Page 6
CSEM Low-Noise Pulse-Detection Pixels
Low-Noise Pulse-Detection Pixel Design Parameters
Parameter
#1: Short Pulses
#2: Long Pulses
Detected pulse width
1.5 ns – 10 ns
150 ns – 1.5 µs
Conversion factor
12.5uV/e-
27µV/e-
Recharge time constant
50 ns
10 µs
High-pass filter time constant
12 ns
2 µs
Pixel area
30 µm x 22 µm
30 µm x 20 µm
Fill factor
51 %
56 %
High-pass filtering capacitance
115 fF
200 fF
Copyright 2011 CSEM | Rolf Kaufmann | Page 7
CSEM Low-Noise Pulse-Detection Pixels
Noise Comparison Circuit Only (Simulation)
Circuit Component
ENC contribution
Buffer
1.6 e
High pass filter
3.9 e
Low pass filter
1.4 e
Reset resistor
12.7 e
TOTAL
13.5 e
Copyright 2011 CSEM | Rolf Kaufmann | Page 8
Photogate-Pixel to Reduce Sense-Node Capacitance
Copyright 2011 CSEM | Rolf Kaufmann | Page 9
CSEM Low-Noise Pulse-Detection Pixels
20um
Layout Example
FF: 56%
Photogate with a small
Sense node
30um
Copyright 2011 CSEM | Rolf Kaufmann | Page 10
CSEM Low-Noise Pulse-Detection Pixels
Measurement Results
• Pulsed light of visible
wavelength
• Pulse width = 1us
• Repetition rate = 5000 Hz
Copyright 2011 CSEM | Rolf Kaufmann | Page 11
CSEM Low-Noise Pulse-Detection Pixels
High-Pass Filter Tuning
Optimum noise performance: 12 e- ENC
Copyright 2011 CSEM | Rolf Kaufmann | Page 12
Option: Scintillator based Pulse Detection Pixel
• Structured Scintillator to guide light onto one pixel
• Concept: Filling of trenches in Silicon wafer with scintillator material
• Minimal cross-talk between different pixels
• Low threshold (low noise) pulse detecting pixel required
silicon
scintillator
Copyright 2011 CSEM | Rolf Kaufmann | Page 13
Monolithic Direct X-ray Detectors
• Germanium as detector material
Copyright 2011 CSEM | Rolf Kaufmann | Page 14
Monolithic Direct X-ray Detectors
• Ge epitaxially grown
on backside of
CMOS wafer
 Monolithically integrated
direct detector
 Challenges:
o Compatible CMOS process  tungsten metallisation, n-type wafer
o Epitaxial growth of thick hetero-layers  LEPECVD
Copyright 2011 CSEM | Rolf Kaufmann | Page 15
Selective Epitaxy of Thick Ge Absorbers on Silicon
Top view
Side view
20 m Ge pillars on Si (7.4 nm/s, 500 °C)
Copyright 2011 CSEM | Rolf Kaufmann | Page 16
NIR detectors
NIR Ge Sensors
• Monolithic integration of
Ge photodetectors on CMOS
demonstrated for NIR application
500
10
400
20
300
30
40
• 64 x 64 pixel NIR image sensor exists
200
50
100
60
0
60
50
40
30
20
10
Copyright 2011 CSEM | Rolf Kaufmann | Page 17
Centre Suisse d’Electronique et de Microtechnique
CSEM
… is a research and development company, active in
the domains of micro-, nano- and information technology
… is a private company, with mainly industrial, but also
public shareholders, not-for-profit
… is under contract by the Swiss Government to perform
a special mission in micro- and nanotechnology
… has revenues (2009) of 70 MCHF, today ~ 400 employees,
five centers in Switzerland & international activities
Copyright 2011 CSEM | Rolf Kaufmann | Page 18
CSEM – our mission
Technology transfer
T E C H N O L O G Y P U S H (Valorization)
Education
Research
Industrialization
of Technologies
Product
Development
Markets
MARKET PULL
Mission of Universities
Mission of Industries
Mission of CSEM
Copyright 2011 CSEM | Rolf Kaufmann | Page 19
The CSEM Innovation Centers in Switzerland
Basel
Zürich
Neuchâtel
Alpnach
Landquart
Copyright 2011 CSEM | Rolf Kaufmann | Page 20
CSEM - Photonics
Technoparkstrasse 1
8005 Zurich
Switzerland
Copyright 2011 CSEM | Rolf Kaufmann | Page 21
CSEM - Photonics
Specialties and Competencies
• Optical systems in the VIS and NIR
• Image sensor desing
• Optical design
• Optical and electrical characterisation
• X-ray imaging
• Phase contrast x-ray
• X-ray detection
• Image processing software
• Integrated sensor systems
Copyright 2011 CSEM | Rolf Kaufmann | Page 22
Division Photonics
• 26 employees
• Mainly physicists and electro-engineers
• 2 PhD students
• International projects
• 1’100 m2 office, dark room
and lab space
Copyright 2011 CSEM | Rolf Kaufmann | Page 23
How to Implement Single Photon Detection
in Visible Domain ?
• Extremely low noise levels necessary for
photon resolution (< 1electron ENC)
• Today’s image sensors use mostly
integrating and not pulse counting circuits
(except SiPM / APD arrays)
• Two architectures prevalent today:
Copyright 2011 CSEM | Rolf Kaufmann | Page 24
Charge Coupled Devices (CCD)
• Charge “buckets” implemented
as MOS capacitors
• Charge transport almost
noise free
• Noise from
• Leakage currents (~10 e/pixel/s)
can be reduced by cooling
• Read-out (<10 e/pixel/s)
good transistors difficult
to implement in CCD process
• CCD market shrinking for cost reasons
Copyright 2011 CSEM | Rolf Kaufmann | Page 25
Active Pixel Sensors
• CMOS APS
• CMOS NWELL as
photodiode
• At least 3 transistors
• Global shutter (snapshot)
possible with shutter transistor
• Still the usual circuit
architecture in image sensors
Copyright 2011 CSEM | Rolf Kaufmann | Page 26
Pinned (Buried) Photodiodes
• Low sense node capacitance (decoupled from photodiode)
• Low leakage currents, low trapping probability
• Noise-free transfer of charges from photodiode to sense-nose possible
• Correlated douple sampling (CDS) possible
Copyright 2011 CSEM | Rolf Kaufmann | Page 27
Correlated Double Sampling (CDS)
• Thermal noise in reset transistors causes variations
of reset voltage
• KTC noise qENC , reset 
kTCsense
• CDS sequence
1. Photoelectron integration (PPD)
2. Sense node reset
3. Readout of reset voltage
4. Transfer of photoelectrons
5. Readout of signal voltage
Copyright 2011 CSEM | Rolf Kaufmann | Page 28
CSEM Low-Noise Integrating Pixels
Example: Low-Light and High Dynamic Range (2007)
• 256 x 256 pixels (Testchip)
• 0.18 m CMOS technology
• Pinned photodiodes
• Readout noise < 2 erms@ room temp.
• 3-5 photons / pixel
• Dark current of 5pA/cm2
• Dynamic Range > 140db using logarithmic compression for high light levels
• One of the most sensitive CMOS sensors at that time (without APD)
Copyright 2011 CSEM | Rolf Kaufmann | Page 29
CSEM Low-Noise Integrating Pixels
Readout Noise in Integrating CMOS Image Sensors
• Image sensors with pinned photodiodes (PPD) and CDS (Correlated Double
Sampling): Readout noise can be dominant sensor noise source
• Readout noise in conventional image sensors:
• Source-follower noise: ENC
proportional to sense-node
capacitance => PPD ideal !
reset
transfer
• High impact of downstream
circuit noise due to low pixel
conversion factor
sense node
column
line
select
bias
ADC
Copyright 2011 CSEM | Rolf Kaufmann | Page 30
CSEM Low-Noise Integrating Pixels
Amplifying Pixel
Limit bandwidth & reduced impact of downstream circuit noise
Conventional
Amplifying pixel
reset
transfer
sense node
transfer
sense node
select_n
Csense
V e 

bias
qENC ,thermal  Csense  kTCcolumn
CFpixel  Av
column
line
q
reset_n
q
Csense
Rl
CFpixel 
column
line
select
qENC ,thermal  Csense  kT Av Ccolumn
Copyright 2011 CSEM | Rolf Kaufmann | Page 31
CSEM Low-Noise Integrating Pixels
Reset Switch
• Reset switch on: reset voltage senses column offset voltage differences
• Guarantees a constant amplifier operating point
Conventional
Amplifying pixel
reset
transfer
sense node
transfer
sense node
select_n
bias
column
line
reset_n
Rl
column
line
select
Copyright 2011 CSEM | Rolf Kaufmann | Page 32
CSEM Low-Noise Integrating Pixels
Amplifying Pixel Measurement Results
Parameter
Value
Pixel pitch
11µm
Fill factor
40% to 48%
Transistor count
Sense node capacitance
Voltage gain (linear)
Pixel conversion factor (linear)
4
5.3 fF
9.9
300µV/e-
Linear range
3 ke-
Full well capacity
34 ke-
Dynamic range (Texp = 17ms)
87.1dB
C. Lotto:
Synchronous and asyn-chronous detection of
ultra-low light levels using CMOS compatible
semi-conductor technologies
PhD Thesis (2010)
University of Neuchâtel
Copyright 2011 CSEM | Rolf Kaufmann | Page 33
CSEM Low-Noise Integrating Pixels
Noise Measurements
Readout noise:
Dark noise (Texp=17ms):
0.9 electrons
1.5 electrons
• Readout noise: sequence without activation of TX gate
• Dark noise:
Readout noise + Photodiode dark current shot noise + Transfer noise
Copyright 2011 CSEM | Rolf Kaufmann | Page 34
Conclusions
• Visible light image sensors are close to single photon detection capability
• In-pixel amplification including optimized bandwidth engineering
• Sub-electron readout noise at practical pixel pitch, fill factor, frame rate and dynamic range
• X-ray pulse detection pixels also benefit from low noise circuits
• In-pixel band-pass filtering
• Overall noise floor of 12 electrons
Copyright 2011 CSEM | Rolf Kaufmann | Page 35
Thank you for your attention.
Related documents