Download Sinusoids and Phasor..

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Sinusoids and Phasors
Instructor: Chia-Ming Tsai
Electronics Engineering
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.
Contents
•
•
•
•
•
•
•
•
Introduction
Sinusoids
Phasors
Phasor Relationships for Circuit Elements
Impedance and Admittance
Kirchhoff’s Laws in the Frequency Domain
Impedance Combinations
Applications
Introduction
• AC is more efficient and economical to
transmit power over long distance.
• A sinusoid is a signal that has the form of the
sine or cosine function.
• Circuits driven by sinusoidal current (ac) or
voltage sources are called ac circuits.
• Why sinusoid is important in circuit analysis?
– Nature itself is characteristically sinusoidal.
– A sinusoidal signal is easy to generate and
transmit.
– Easy to handle mathematically
Sinusoids
Consider t he sinusoidal voltage
v(t )  Vm sin t
where
Vm  the amplitude of the sinusoid

   the angular frequency (radians/s )
ωt  the argument of the sinusoid

The sinusoid repeats itself every T seconds.
2
ωT  2  T 
(T:period )
ω
v(t  nT )  v(t )
Proof :
v(t  nT )  Vm sin  (t  nT )
2
)
ω
 Vm sin( t  2n )
 Vm sin  (t  n
 v(t )
Sinusoids (Cont’d)
• A period function is one that satisfies
f(t) = f(t+nT), for all t and for all integers n.
– The period T is the number of seconds per cycle
– The cyclic frequency f = 1/T is the number of
cycles per second
1
f 
T
  2f
where
 : radians per second (rad/s)

 f : hertz (Hz)
A more general expression is given as
v(t )  Vm sin( t   )
where
(t   ) : Argument

: Phase

Sinusoids (Cont’d)
We say that
We say that
v2 leads v1 by 

v1 lags v2 by 
v1 and v2 are in phase , if   0

v1 and v2 are out of phase, if   0
Sinusoids (Cont’d)
• To compare sinusoids
– Use the trigonometric identities
– Use the graphical approach
Trigonomet ric identities :
sin( A  B)  sin A cos B  cos A sin B
cos( A  B)  cos A cos B  sin A sin B
sin( t  180)   sin t
cos(t  180)   cos t


sin( t  90)   cos t
cos(t  90)   sin t
The Graphical Approach
A cos t  B sin t  C cos(t   )
C  A2  B 2

where 
1 B
  tan A
3 cos t  4 sin t
 5 cos(t  53.1)
Phasors
• Sinusoids are easily expressed by using phasors
• A phasor is a complex number that represents
the amplitude and the phase of a sinusoid.
• Phasors provide a simple means of analyzing
linear circuits excited by sinusoidal sources.
Considerin g a complex number z ,
their are three ways to represent it.
 x  jy : Rectangula r form
r : the magnitude of z

z   r : Polar form
, where 
 : the phase of z
re j : Exponentia l form

Phasors (Cont’d)
 x  jy : Rectangula r form

z   r : Polar form
re j : Exponentia l form

Given x and y, we can get r and  as
y
r  x  y ,   tan
x
If we know r and  , we can obtain x and y as
2
2
1
x  r cos  , y  r sin 
z  x  jy  r  r (cos   j sin  )
Important Mathematical Properties
z  x  jy  r
z1  x1  jy1  r11
z2  x2  jy2  r22
Addition :
z1  z 2  ( x1  x2 )  j ( y1  y2 )
Substracti on :
z1  z 2  ( x1  x2 )  j ( y1  y2 )
Multiplica tion :
z1 z 2  r1r2 (1  2 )
Division :
z1 r1
 (1  2 )
z 2 r2
Reciprocal :
Square Root :
1 1
  
z r
z  r  2
Complex Conjugate : z   x  jy  r  
Phasor Representation
e
j
 cos   j sin 
cos   Re( e j )

j
sin


Im(
e
)

v(t )  Vm cos(t   )
 Re(Vm e j (t  ) )  Re(Vm e j e jt )
 v(t )  Re( Ve jt )
V  Vm e j  Vm 
V is the phasor representa tion
of the sinusoid v(t ).
Phasor Representation (Cont’d)
Phasor Diagram
V  Vm 
I  I m  
Sinusoid-Phasor Transformation
v(t )  Vm cos(t   )  V  Vm 
dv(t )
 Vm sin( t   )  Vm cos(t    90)
dt
 Re(Vm e jt e j e j 90 )  Re e j 90 (Vm e j )e jt

 Re( jVe jt )
dv
 jV
dt
Similarly,
V
 vdt  j

Phasor Relationships for Resistor
If the current th rough the resistor is
i  I m cos(t   )
 I  I m 
By Ohm' s law,
v  iR  RI m cos(t   )  V  RI m   RI
Time domain Phasor domain
Phasor diagram
Phasor Relationships for Inductor
If the current th rough the inductor is
i  I m cos(t   )
 I  I m 
The voltage across the inductor is
di
v  L  LI m cos(t    90)  V  jLI
dt
Time domain Phasor domain
Phasor diagram
Phasor Relationships for Capacitor
If the voltage across the capacitor is
v  Vm cos(t   )
 V  Vm 
The current th rough the capacitor is
dv
iC
 CVm cos(t    90)  I  jCV
dt
Time domain Phasor domain
Phasor diagram
Impedance and Admittance
V
1
Impedance : Z 
() , Admittance : Y 
(S)
I
Z
V is the phasor vol tage
whe re 
 I is the phasor current
Element
Impedance
R
ZR
L
Z  j L
C
1
Z
j C
Admittance
1
Y
R
1
Y
j C
Y  jL
Impedance and Admittance (Cont’d)
Z  j L
 0
 
1
Z
jC
 0
 
Impedance and Admittance (Cont’d)
Z  R  jX
 R : resistance
where 
 X : reactance
The impedance is said to be
inductive when X is positive

capacitive when X is negative
Z  R  jX  Z 
 Z  R2  X 2

where 
1 X
   tan
R

 R  Z cos 
and 
 X  Z sin 
If X is positive, then
Z  R  jX : inductive or lagging

since current lags voltage
 Z  R  jX : capacitive or leading


since current leads voltage
Impedance and Admittance (Cont’d)
1
Y   G  jB
Z
G : conductanc e
where 
 B : susceptanc e
1
1
R  jX
R  jX
G  jB 


 2
R  jX R  jX R  jX R  X 2
R

G  R 2  X 2

X
B  2
R X2

KVL and KCL in the Phasor Domain
Vm1e j1  Vm 2 e j 2  jt 
e   0
 Re 
j

      Vmne n  
For KVL, let v1 , v2 ,..., vn , be the
voltages around a closed loop.
 v1  v2      vn  0
Let VK  Vmk e j k , then
In the sinusoidal steady state,
each volta ge may be written
in cosine form.
 Vm1 cos(t  1 )  Vm 2 cos(t   2 )
     Vmn cos(t   n )  0
This can be written as
j1
Re(Vm1e e
j t
j 2
)  Re(Vm 2 e e
j t
     Re(Vmne j n e jt )  0
)


Re V1  V2      Vn e jt  0
Since e jt  0 for any t ,
 V1  V2      Vn  0
 KVL holds for phasor!!!
In a similar manner,
KCL holds for phasor.
 I1  I 2      I n  0
Series-Connected Impedance
Applying KVL gives
V  V1  V2      Vn
 I(Z1  Z 2      Z n )
V
 Z eq   Z1  Z 2      Z n
I
Zk
V
I
, Vk 
V
Z eq
Z eq
Parallel-Connected Impedance
Applying KCL gives
I  I1  I 2      I n
I
 Yeq   Y1  Y2      Yn
V
1
1
1
Yk
I
 V( 
   )
V
, Ik 
I
Z1 Z 2
Zn
Yeq
Yeq
Y- Transformations
Y  Δ Conversion:
Z1Z 2  Z 2 Z 3  Z 3Z1
Za 
Z1
Δ  Y Conversion:
Zb Zc
Z1 
Z a  Zb  Zc
Z1Z 2  Z 2 Z 3  Z 3Z1
Zb 
Z2
ZcZa
Z2 
Z a  Zb  Zc
Z1Z 2  Z 2 Z 3  Z 3Z1
Zc 
Z3
Z a Zb
Z3 
Z a  Zb  Zc
Example 1
Find Zin for
  50 rad/s.
Z in  Z 2 mF  Z 3 10mF || Z8  0.2 H


1
1
 || 8  j  0.2

  3 
j  2 m 
j 10m 
  j10   3  j 2  || 8  j10 

3  j 28  j10 
  j10 
 3.22  j11.07
11  j8
Example 2
Find vo (t).
Sol:
vs  20 cos( 4t  15)
 Vs  20  15 ,   4
j 20 ||  j 25
Vo 
Vs
60   j 20 ||  j 25
j100
20  15

60  j100
 0.857530.9620  15
 17.1515.96
 vo (t )  17.15 cos( 4t  15.96)
Example 3
Sol:
j 4 ( 2  j 4)
Z an 
j4  2  j4  8
 1.6  j 0.8
j 4(8)
Z bn 
 j 3. 2
10
8(2  j 4)
Z cn 
 1.6  j 3.2
10
Z  12  Z an 
Z bn  j3 || Z cn  j 6  8
 13.6  j1  13.644.204
V
500
I 
Z 13.644.204
 3.666  4.204
Find I.
-Y transformation
Applications: Phase Shifters
Vo 
R
1
R
jC
jRC
Vi 
Vi
1  jRC

RC
1 
1 

 tan 
 Vi
2 2 2
 RC 
 1  R C
Leading
output
Phase Shifters (Cont’d)
1
1
jC
Vo 
Vi 
Vi
1
1  jRC
R
jC


1
1

  tan RC  Vi
2 2 2
 1  R C

Lagging
output
Example
Design an RC circuit
to provide a phase of
90 leading..
Sol:
20(20  j 20)
Z  20 || (20  j 20) 
 12  j 4
40  j 20
 2

Z
12  j 4
V1 
Vi 
Vi  
45 Vi
Z  j 20
12  j 24
 3

 2

 2
 2

20
1






Vo 
V1  
45 V1  
45 
45 Vi  90
20  j 20
3
 2

 2
 3

Applications: AC Bridges
Balanced condition : V1  V2
Zx
Z2
V1 
Vs  V2 
Vs
Z1  Z 2
Z3  Z x
Zx
Z3
Z2

 Z 2 Z 3  Z1Z x  Z x 
Z2
Z1  Z 2 Z 3  Z x
Z1
AC Bridges (Cont’d)
Bridge for measuring L
Bridge for measuring C
R1
Lx 
Ls
R2
R1
Cx 
Cs
R2
Summary
• Transformation between sinusoid and phasor
is given as
v(t )  Vm cos(t   )  V  Vm
• Impedance Z for R, L, and C are given as
1
Z R  R, Z L  jL, ZC 
jC
• Basic circuit laws apply to ac circuits in the
same manner as they do for dc circuits.