Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Microbial genetics Genetics DNA, its manipulation and the consequences for the organism. Aims to understand cellular functions and properties of organisms. classical genetics: Phenotype genotype protein Mutant-Analysis, Genotype-Phenotype correlation, crosses, gene transfer molecular genetics: Isolate und Analyse DNA, cloning, in vitro Mutagenesis “Reverse genetics”: Protein Genephenotype construction of mutants; analyze in vivo function („phenotype“) prokaryotic eukaryotic molecular biology central dogma of molecular biology: Structure of bacterial DNA - chemical structure: A, C, G, T (like eukaryotes, exception: unmethylated CpG) -„free“ state (not enclosed by a membrane) - nucleoid ≙ eukaryotic chromosome „nucleoid“ Properties of DNA - 1 bp = 0.34 nm (along helix axis) - 1 helical turn = 10.4 bp - 1 nucleotide = 330 Da, 1 bp = 660 Da - 100 nt: fairly rigid - chromosomal DNA: flexible - resistant to alkaline treatment UV absorption spectrum: -1 OD260 double stranded DNA = 50 μg/ml -1 OD260 single stranded DNA = 33 μg/ml Agarose gel electrophoresis - ---- - + Forces: -Effective charge of the molecule -Electrical field strength -cancelled by Friction (stokes law) -gel matrix = sieve Small DNA molecules migrate faster Stokes law: F = 6πrην F = frictional force r = particle radius η = fluid viscosity v = particles speed Working with DNA C. Denaturation/Hybridization „probe“ „Southern“ hybridization Tm = 81.5 + 16.6(log10[Na+]) + 0.41(fraction G+C) -600/N DNA topology Definition: knot-like arrangements that segments of DNA may assume. positive supercoil: twisted in same direction as right handed helix negative supercoil: DNA twisted opposite to hight handed helix DNA topology: requires constraints „Relaxed“ DNA supercoiled DNA constraint Proteins circular DNA DNA topoisomerases Topoisomerase I nicks one strand of DNA double helix relaxes 1 negative supercoil per nick importance: in front of replication fork Topoisomerase II cuts both strands of DNA double helix relaxes or introduces 2 supercoils per cut importance: DNA gyrase from E. coli (replication, decatenation) supercoiled plasmids -R +R -R +R chromosomal DNA (contamination) plasmid multimers plasmid (relaxed) plasmid (neg. supercoiled) denatured supercoiled (non-digestible) + non-denaturing agarose gel-electrophoresis staining of DNA: ethidium bromide DNA topology (Bacteria, Archaea) Ciprobay Gyrase inhibitors = antibiotics: chinolones (i.e. nalidixic acid) fluorochinolones (i.e. ciprofloxacin) novobiocin Bacterial genome: • Size: 5 x 105 – 107 bp • Chromosome(s) – – – – – mostly haploid (generally one chromosome) mostly circular supercoiled organized in nucleoid (1 histone like protein/100 bp) contains essential genes (+ non-essential genes, mobile elements) • Plasmids (facultative) • Phages (facultative) Genomics = analyzing the genome • Genetic mapping: markers (conjugation, transduction) • Physical map: restriction map (size; #chromosomes, linear/circular) • high resolution map: clone overlapping DNA fragments • sequencing: ordered library of plasmids shotgun physical map of R. sphaeroides Genome sequencing 1977 1982 1990 1991 1992 1992 1993 1995 1995 1996 1996 1996 1996 1997 1997 1997 Bacteriophage FX174 Phage l Vaccinia Cytomegalovirus Marchantia polymorpha Mitochondrium Marchantia polymorpha Chloroplast Variola (Pocken) Haemophilus influenzae Rd Mycoplasma genitalium Saccharomyces cerevisiae Mycoplasma pneumoniae Methanococcus jannaschii Synechocystis PCC6803 Escherichia coli Bacillus subtilis Helicobacter pylori 5 kb 48 kb 192 kb 229 kb 187 kb 121 kb 186 kb 1830 kb 580 kb 12’500 kb 816 kb 1665 kb 3573 kb 4639 kb 4200 kb 1668 kb Chromosome organization (141 on 8.4.02) (15 on 8.4.02) (41 finished + unfinished on 8.4.02) Prokaryotes: few introns, little repetitive DNA (Alu etc) Sequence database: http://www.ncbi.nlm.nih.gov/cgi-bin/Entrez/genom_table_cgi rrn operons tRNA genes REP sequences G/C composition of +/- strand phage proteins Science. 1997 277(5331):1453-74. E. coli K12 chromosome 4.7 x 106 bp, circular 4288 genes; 38% unknown 7 rRNA operons 86 tRNA genes 2192 transcriptional units, 73% monocistronic; 6% >4 genes start codons: 83% ATG; 14% GTG; 3% TTG; 1 x ATT; 1 x CTG 405 genes with start/stop overlap largest orf = 2383 aa protein average orf = 317 aa 314 rep elements E. coli chromosome bacterial genomics genome comparison: conserved ORF (minimal genome??) mechanism of genome expansion/contraction evolution of bacteria (commensal pathogen) genome analysis: metabolic functions prediction of nutrient requirements study characteristics Evolution of bacterial genomes mutations Rearrangements, deletions, horizontal gene transfer (Lawrence (1997) Trends Microbiol. 5: 355-359) 620 kb „old“ DNA deleted 620 kb new E. coli (old) Original chromosome 4800 kb DNA integrated 3000 kb new DNA E. coli (new) 2380 kb of new DNA lost right away 100 Million years Final chromosome 4800 kb Minimal gene set - metabolites can be imported; proteins not relies on own gene set Minimal gene set = „least # of genes required for life in extremely rich media“ experimental: transposon mutagenesis deletion of each single orf computational: small genomes of parasites/endosymbionts (Mycoplasma, Buchnera) conserved genes between small genomes (… 150-300 ?) ….there may not be a singular exact answer!!! Genome size: 4.6 Mbp 1.8 Mbp 0.6 Mbp Minimal number of protein genes: 470 (Mycoplasma genitalium) Genes „lost“ in the smallest genomes bacteria living inside host cells RUSSELL F. DOOLITTLE Nature 416, 697 - 700 (2002) a „minimal metabolism“ Microbiol Mol Biol Rev. 2004 Sep;68(3):518-37 genome: prediction of metabolic pathways Helicobacter pylori 26695 circular genome 1,667,867 bp Nature 388, 1997, S. 545 H. pylori: prediction of metabolic capacity Nature 388, 1997, S. 545 Analysis of „non-cultivatable“ bacteria << 5 % of all bacteria have been cultured bacterial consortia in nature: soil gut water genomics approach: DNA isolation + sequence analysis (Cosmids, shotgun) sequence assembly prediction of metabolic capacity study composition of consortium design appropriate culture media Genome based design of Media for Tropheryma whipplei T. whipplei cultivated in fibroblast cell line (HEL) The Lancet (2003), 362, pp. 447-449 in total: 9 aa biosynthesis pathways missing 7 aa biosynthesis pathways incomplete axenic medium: DMEM (aa), 10% FCS, 1% glut., non-essential aa Bdellovibrio bacteriovorus Bdellovibrio bacteriovorus 3.7 Mbp 50% GC 3584 Orfs many: DNases, proteases, RNases, glycanases, lipases A Predator Unmasked: Life Cycle of Bdellovibrio bacteriovorus from a Genomic Perspective Snjezana Rendulic et al., Science Jan 30 2004: 689-692. Bdellovibrio bacteriovorus: hydrolytic enzymes Bacterial genome: • Size: 5 x 105 – 107 bp • Chromosome(s) – – – – – mostly haploid (generally one chromosome) mostly circular supercoiled organized in nucleoid (1 histone like protein/100 bp) contains essential genes (+ non-essential genes, mobile elements) • Plasmids (facultative) • Phages (facultative) Plasmids no „house keeping“/essential genes - size: 1 – 1000 kb (< 5% of chrom.) - double stranded DNA - supercoiled - 1 to >100 copies / cell - autonomous replication („replicon“) -replication controlled by feedbackloops (plasmid/host factors) - very abundant in nature: 300 identified in E. coli isolates Plasmids paramters of interest: size copy number selection marker host range fertility (conjugation?) ori of replication (incompatibility group) additional genes example: cloning vector small high (10->100) antibiotic resistance narrow (safety) non conjugative i.e. ColE1 i.e. lacZ-a (insert screening) Nomenclature for recombinant Plasmids: pXY000 XY: shorthand for name of researcher 000: continuous numbering zB. pBR322 is the 322th plasmid made by Bolivar and Rodriguez. Plasmid encoded phenotypes Examples of naturally ocurring plasmids F-Plasmid Fertility plasmid for conjugative transfer of genes R-Plasmids Antibiotics resistance e.g. amp, kan, tet, cam ColE1 Production von colicin, a bacteriocin against E. coli Ti Tumor initiation in plants pSym symbiotc plasmid for nodulation and N2-fixation Tol degradation of toluene E. coli F-plasmid 99,159 bp replication + segregation tetS IS214-I inv soj 03 orf59 orf60 tetracyclinR orf61 replication: repB + iterons 27 orf9 (Tn916) repB orf7 (Tn916) 25000 orf63 5000 Lactococcus rep# plasmid cat ChloramphenicolR pK214 29871 bp 10000 20000 mob IS214-II oriT nel IS904 nick site 15000 repD str mef214 streptomycinR IS214-III rob binL IS215 IS904# phnB p35 macrolide efflux pump tetracyclinR replication: repB + iterons ChloramphenicolR streptomycinR macrolide efflux pump Where does antibiotic resistance come from? Overview: 2 ways to acquire resistance: mutation of a target gene acqusition of novel genes (source antibiotic producers) genetic basis of spread of antibiotics resistance factors involved in spread of resistance: medicine agriculture Antibiotic resistance in pathogenic bacteria plasmids = tools in modern molecular biology vector property_______________________ Cloning: obtain/analyze a specific piece of DNA Expression: regulated promotor Shuttle: promotors/ori for diverse organisms Mobilizable: transferable by conjugation broad host range: works in diverse bacteria suicide: site directed mutagenesis cosmids: plasmid/phage lambda etc. ancestor of most general cloning vectors: pBR322 pGEX-3X Bacterial genome: • Size: 5 x 105 – 107 bp • Chromosome(s) – – – – – mostly haploid (generally one chromosome) mostly circular supercoiled organized in nucleoid (1 histone like protein/100 bp) contains essential genes (+ non-essential genes, mobile elements) • Plasmids (facultative) • Phages (facultative) Bacteriophages = bacterial viruses Bacteriophages: plaque formation Virulent phages Temperate phages Phage lambda genome E. coli O157 Sakai LEE-locus (Type III secr.) stx2 stx1 Q Shiga toxin 1A S SpLE6 SpLE5 yj S S cI cro cII O P int xis exo gam bet kil cIII ssb sieB E. coli K12 vs. O157 Sakai N stx2 Sp18 SpLE4 LEE-locus C. SpLE3 Sp17 C. Sp15 SpLE2 Sp14 Sp13 Sp12 Sp11 C. Sp10 Sp9 Sp8 Sp6 Sp7 SpLE1 Sp5 Sp4 Sp3 Sp2 Sp1 KpLE2 CP4-57 CP4-U KpLE1 CP4-44 Qin Rac e14 DLP CP4-6 K-12 stx2 O157 Sakai Sp16 Phage „cargo“ genes Evolution of bacterial genomes Mutations Rearrangements, deletions, horizontal gene transfer (Lawrence (1997) Trends Microbiol. 5: 355-359) 620 kb „old“ DNA (includes plasmids, phages) 620 kb new E. coli (old) Original chromosome 4800 kb DNA integrated naked DNA plasmids phages includes: plasmids phages 100 Million years E. coli (new) Final chromosome 4800 kb