Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
GENETICS Definitions • Penetrance - The probability that an individual who is ‘at-risk’ for the disorder (ie- carries the gene) develops (expresses) the condition. May be age dependent. • Expression - The characteristics of a trait or disease that are outwardly expressed. Eg-myotonic dystrophy: myotonia, cataracts, narcolepsy, frontal balding, infertility. Penetrance and Expressivity • Penetrance: Proportion that expresses a trait – Complete: P=1.0 or 100% – Incomplete (“reduced”): P<1.0 or < 100% • Expressivity: Severity of the phenotype – Expressivity may vary • Between families (interfamilial) or • Within families (intrafamilial) • TRY NOT TO CONFUSE “VARIABLE EXPRESSIVITY” WITH “INCOMPLETE PENETRANCE” Chromosomes, Genes and Proteins Genes are on Chromosomes Genes may encode proteins or RNA Chromosome Facts • • • • Chromosomes replicate during S phase Chromosomes recombine during Pachytene Recombination is an obligate activity Sex chromosomes recombine with each other Cell Division: Meiosis • Occurs in germ cells – Oogenesis – Spermatogenesis • Preserves the diploid chromosome number in human cells • Genetic diversity – Paternal and maternal chromosome combination at fertilization – Crossing over Meiosis Creates Gametes And provides a basis for genetic recombination! Genetic Recombination • Crossing Over • Resolution • Recombinant Chromosomes – – – – – OBLIGATE ACTIVITY FEMALE RECOMB. RATES HIGHER THAN MALE INCREASED RATES AT TELOMERES PARADOX: SHORT ARMS SHOW MORE THAN LONG ARMS 1cM is 1 Mb on long arms, but short arms are 2 cM per Mb and the Yp-Xp pseudoautosomal region is 20 cM per Mb. Genes • Units of heredity • Encode proteins (and some RNAs) • Human genetics is the study of gene variation in humans • ‘Gene’ as a term is used ambiguously to refer both to the ‘locus’ and the ‘allele’ ie- There is only one locus but two alleles in a given individual. • Sequencing in both genome projects took place upon multiple alleles; this has led to some assembly confusions. • Ultimately want a haploid genome map. What is genetics? “Genetics is the study of genes” -- Griffiths et al, Introduction to Genetic Analysis Genetics – study of single or a few gene and their phenotypic effect Genomics – a study of all the genes in the genome and their interaction DNA microarray analysis of tumor What is a gene? “A gene is a section of a threadlike double helical molecule called DNA” -- Griffiths et al, Introduction to Genetic Analysis Genes are DNA segments that have a functional role in the cell and are responsible for inheritance of traits Genes comprise only about 2 % of the human genome; the rest consists of non-coding regions Inheritance Pea flowers can be purple or white Cross purple and white - get all purple Gregor Mendel (1860s) Cross offspring - get ¾ purple Inheritance occurs in a discrete manner Mendelian inheritance • There are 2 copies of each gene in each cell, and a single gene determines a single trait • Genes have alleles that are dominant or recessive phenotype genotype AA dominant allele aa Aa recessive allele Alleles reassort randomly in offspring AA A a A a a a Polydactyly is a dominant trait Non-Mendelian inheritance Some traits are determined by 2 or more genes, each with multiple alleles Continuous traits are determined by large numbers of genes 3 different genes determine color and pattern in the foxglove flower Human height is a continuous trait Genetics and environment Phenotype is determined by BOTH genotype AND environment Example: Adult onset diabetes • Susceptibility genes are inherited • Environmental factors influence disease onset (eg. obesity) Genetic structures Cells Genes Chromosomes DNA Human chromosomes 22 pairs of autosomes + 2 sex chromosomes (XX or XY) Sex chromosomes and inheritance • Many genes are carried on the X and not the Y chromosome • Recessive alleles on the X will appear dominant in males (no other allele present to mask the recessive phenotype) Example: red-green color blindness is X-linked X chromosome inactivation • X chromosome has many more genes than the Y chromosome • Females have 2 Xs One X must be inactivated to preserve gene dosage Inactive Xs condense to form Barr bodies during development Inactivation is random during development Barr bodies in female cells Color pattern seen in female calico cats due to random X chromosome inactivation DNA structure • Only 4 nucleotides (bases) make up all DNA: A (adenine) -T C (cytosine) -G T (thymine) -A G (guanine) -C • DNA strands are antiparallel • The two ends (5 prime and 3 prime) are not equivalent Autosomal Dominant Disorders • Manifested in heterozygous state • At least one parent is usually affected • Both males and females are affected and both can transmit the condition • If unaffected marries an unaffected – child has one chance in two of having the disease • Many new mutation seem to occur in germ cells of relatively older father • Clinical feature can be modified by reduced penetrance and variable expressivity • In many condition, the age at onset is delayed. (Huntington disease) Autosomal Recessive Disorders • Single largest category of mendelian disorders. • Results only when both alleles at a given gene locus are mutant. • Traits does not usually affect the parents but siblings may show the disease • Siblings have one chance in four of being affected • Equal numbers of affected males and females • Affected persons who marry normals have only normal offspring Autosomal Recessive Disorders • The expression of the defect tends to be more uniform than in autosomal dominant disorders • Complete penetrance is common • Onset is frequently early in life • Eg – Phenylketonuria – cystic fibrosis X-linked Dominant Inheritance • Each generation usually has an affected individuals • Affected males with normal mates have no affected sons and no normal daughters • Both sons and daughters of an affected heterozygous female may be affected X-linked Recessive Inheritance • Affected fathers never transmit the trait to their sons • Unaffected parents may have affected offspring • Generally there are more affected males than females The Central Dogma DNA replication • Replication is semiconservative Replication fork • Each child strand has one of the parent strands • Replication only occurs in the 5’ to 3’ direction Transcription DNA encoding gene messenger RNA Translation messenger RNA protein Amino acids tRNA mRNA ribosome Protein function • Proteins are the primary molecules responsible for cellular function • They have complex structure and some can perform chemical reactions (enzymes): DNA structure Protein structure (hemoglobin) RNA function • Some specialized RNA molecules have function: Ribosomes contain both RNA and protein Ribozymes are RNA-based enzymes capable of RNA cleavage • RNA molecules may be the precursors to life as they can both • Form complementary base pairs and replicate (like DNA) • Perform enzymatic functions (like proteins) Genes Genes are not just “beads on a string” – they have complex structure Gene structure • Genes are fragmented, containing non-protein-coding introns between the functional exons • On average ~2000-3000 bp coding, but there can be >10,000 bp between exons • Size can vary by up to 4 orders of magnitude Mutation • DNA mutation is any change in DNA sequence • Mutation can occur due to: • DNA damage from environmental or chemical agents (eg. UV) • Genetic events (eg. recombination - exchange of DNA between chromosomal segments) Base level mutation Changes that affect a single nucleotide: • UV light can produce thymidine dimers which can cause deletions of a single base pair during replication • Methylated Cs can deaminate to Ts • Repeated sequences can cause insertions and deletions Gene level mutation Changes that affect an entire gene: • Tandem gene duplication can result from unequal DNA exchange between chromosomes (unequal crossover) Chromosome level mutation Changes that affect part of a chromosome: Deletion Inversion Translocation Copy number changes Role of mutation in disease Mutation always has the potential to cause disease: Single amino acid change in hemoglobin causes sickle cell anemia Down syndrome is caused by a third copy of chromosome 21 Cancer occurs when mutations cause cells to grow in an uncontrolled way Role of mutation in evolution Mutation is not all bad! • Occurs at a high rate in all our cells and does NOT always have negative effects • No mutation population cannot change and adapt to new conditions • Random changes in DNA sequence beneficial changes in phenotype natural selection evolution of population Beneficial mutations Changes in DNA sequence can be beneficial: • Some changes in DNA sequence of molecules that recognize bacteria can protect against disease • Duplication of a gene allows one copy to mutate freely, which can result in a new and different gene B Human Genome Project Aim: Determine the entire sequence of the human genome. Problem: It’s really big! 3 billion base pairs What does the sequence mean? TCACAATTTAGACATCTAGTCTTCCACTTAAGCATATTTAGATTGTTTCCAGTTTTCAGCTTTTATGACTAAATCTTCTAAAATTGTTTTTCCCTAAATGTATATTTTAATTTGTCTCAGGAGTAGAATTTCTGAGTCATAAAGCGGT CATATGTATAAATTTTAGGTGCCTCATAGCTCTTCAAATAGTCATCCCATTTTATACATCCAGGCAATATATGAGAGTTCTTGGTGCTCCACATCTTAGCTAGGATTTGATGTCAACCAGTCTCTTTAATTTAGATATTCTAGTACAT ACAAAATAATACCTCAGTGTAACCTCTGTTTGTATTTCCCTTGATTAACTGATGCTGAGCACATCTTCATGTGCTTATTGACCATTAATTAGTCTTATTTGTTAAATGTCTCAAATATTTTATACAGTTTTACATTGTGTTATTCATT TTTTAAAAAATTCATTTTAGGTTATATGTATGTGTGTGTCAAAGTGTGTGTACATCTATTTGATATATGTATGTCTATATATTCTGGATACCATCTCTGTTTCATGCATTGCATATATATTTGCCTATTTAGTGGTTTATCTTTTCAT TTTCTTTTGGTATCTTTTCATTAGAAATGTTATTTATTTTGAGTAAGTAACATTTAATATATTCTGTAACATTTAATGAATCATTTTATGTTATGTTTAGTATTAAATTTCTGAAAACATTCTATGTATTCTACTAGAATTGTCATAA TTTTATCTTTTATATACATTGATATTTTTATGTCAAATATGTAGGTATGTGATATTATGCACATGGTTTTAATTCAGTTAATTGTTCTTCCAGATGTTTGTACCATTCCAACATCATTTAAATCATTAAATGAAAAGCCTTTCCTTAC TAGCTAGCCAGCTTTGAAAATCCATTCATAGGGTTTGTGTTAATATATTTTTGTTCTTTTTTTTCCTTTCTACTGATCTCTTTATATTAATACCTACTGTGGCTTTATATGAAGTCATGGAATAATACGTAGTAAGCCCTCTAACACT GTTCTGTTACTGTTGTTATTGTTTTCTCAGGGTACTTTGAAATATTCGAGATTTTATTATTTTTTAGTAGCCTAGATTTCAAGATTGTTTTGACGATCAATTTTTGAATCAATTGTCAATATTTTTAGTAATAAAATGATGATTTTTG ATTGGAAATACATTAAATCTATAAGCCAAATTGGAGATTATTGATATATTAACAAAAATGAGTTTTCCAGTCCATGAATGTATGCACATTATAAAATTCATTCTTAAGTATGTCATTTTTTAAGTTTTAGTTTCAGCAGTATATGTTT GTTACATAGGTAAACTCCTGTCATGGGGGTTAGTTGTACAGGTTATTTTATCATCCAGGCATAAAGCCCAGTACCCAGTAGTTATCTTTTCTGCTCCTCTCCCTCCTGTCACCCTCCACTCTCAAGTAGACCCCAGTTTCTGTTGTTC TCTTCTTTGCATTAATGACTTCTCATCATTTAGATTGCACTTGTAAGTGAGAACAGGACGTATGTGGTTTTCTACTCCTGTGTTAGTTTGCTAAGGATAACCACCTCCATCTCCATCCATGTTCCCACAAAAGACATGATCTCCTTTT TTATGGCTGCATATTATTCCATGGTATATATGTACCACATTTTCTTTATCCAATCTGTCATTGATGGACATTTAGGTTGTTTCCACATCATTGCCGTTGTAAATACTGCTGCAGTGAATATTCGTGTGTATGTCTTTATGGTAGAATG ATTTATATTCCTCTGGGTATATTTCCAAGTAATGGGATGGTTGGGTCAAATGGTAATTCTGCTTTTAGCTTTTTGAGGAATTGCCATATTGCCTTTCACAACGGTTGAACTAATTTATACTCCCAAGAGTGTATAAGTTGTTCCTTTT TCTCTGCAACCTCGACATCACCTGTTATTTATGACTTTTATATAATAGCCATTCTGCTGGTCTGAGATGGTATCTCATTATGATTTTGATTTGCATTTCTCTAATGCTCAGTGATATTGAGCTTGGCTGCATATATGTCTTCTTTTAA AAATATCTGTTCATGTCCTTTGCCTAATTTATAACGGGGTTGTTTGTTTTTCTCTTGTAAATTTGTTTAAGTTCCTTATAGATTCTAGGTATTAAACCTTTTTTCAGAGGCGTGGCTTGCAAATATTTTCTCCCATTCTATAGGTTGT CTGTTTATTCTGTTGATAGTTTCCCTTGCTGTGCAGAAGCTCTTAACTTTAATTAGATCCGACTTGTCAATTTTTGCTTTGGTCGCAATTGCTTTTGATGTTATTGTCGTGAAATCTTTGCTAGTTCTTAGGTCCAGGATGATATTGC CCAAGTTGTCTTCCAGGGCTTTTATAATTTTGGATTTTACATTTAAGTCTTAATATATTTATTAAATTTGTTAGGGTTTCAGGATACAAGGACAATATAGCAGCAAACAATGTAAAAGTAAAATCTGAAAAATAATAGAAAACAGTTT AATTGAACACTTTACCATTATGTAATGCCCTTCTTTGTCTTTCCTGATCTTTGTTGGTTTGAAGTTCAAAAAAGACAAACTTAATGGTACAATAGGTATTGTAGATTTCAGGACTTTCTGTATAAAATATTTTGTATATATGAATAGA TCATTTTTTATTTCCAGTCTTTAAACATTTTCTTAACATTTTCTTCTATTGCTTCACTTCACTCGCTAGGACCATCAGGACAGTGTTGAACAGAAATTGTCAGACTGATCATCACAACTTTTTCTAGATTTTAGAAGGAAATTTTTCT TTATTTCAACATAAAGCAGCATGTTAATGCCAAGTTTTAATATGTGTTATCAGATTGAAATTTTTTTGTATATTTCTACATTACCAAGAATTTTTAGCAAGAGTTTTTGTTGAGTTTTAATTTAAAAATCATTTGTTAATTTCATCTG ATTTTTTTATTTCTCTTTTTACCTTAAGAGATTAAACTGACTACAGATTGAATATAAACAAACAAACAAACAAACAAAAACTCTAAAATGCTGTGGATCAACACCACTTAGTAATTTGTATACTTGGATTCAATTTGCTGAAATTTTG TTAGACATTTTTGCGTCGATATTTATGAGGGATGTTGATCTGTAAAAGTATTAAAATGCCTTTGACAGATTTTGATAGCAGTGTTATTCTGGCCTAATAAATCAAACTGAGGTATGATCCTTCCTTTTCTATTTCTTAATAGCATTTT TAAAATTGGTGGTTTTTTCCTTCCTTAGTGAAATTTACCAGCAAAGTAACAGGCCTTATATTTCTCTTGTGGAAATATTTTAATTTCAAATTAATGGTATTTTGTTCTTGTAGGGTGGTAATTTTCTCTGTGTTTGGTCTTAATGGAC TCTTAGCTGATCACCCAGTTACTCAGCGAGGTCTCTTCACTCTGGAAGAGCTGGAACTCCAGTGTGTTTTAGTGCAGCATGACCACGGGTATTACCGTTCAACATTTAGGCTTTATCAGTGATAACTATTTGTCCTCATGGAGTTTTT GCCGCTGGGCCTACACAGTTTAGGCTTCAGCTTAGAACACATAATGAATTCTTATGCAGATTTCTGCCCACCTTTGACCTTTCATGATTTCCTCTTCTTGGGTAAGCTGCCTTATTAATCTGATACACTTCAGCAGTCCAGAACTACA CTCTTTCCCTTCTCTGCTCTTGGAGATGACTCTTTTGTCTGAGATTCACTTTGCTGTGCTGAAAAAGAAAAGTGCTTCAAGGAAGATACCAAGGAAAATCACAGGGCTCATTTATGTATTTCTCTTCTTTCAAGGACTACAGCTTTGT GTTGCCTATGTTCAATTTCTGAAAATAATTAGAGCATATATACTCTGTGTGAGAAGGCAAATCCAGACAGTTAGTTTGTATGACTAGAAGCAGAAGTCTACATGGAGAATTTTACTTAACTGTGTTATAGTTTCTTTAATTATTTCAA GAGTATGTTTAATGTTCCACAGATCTCATTCTATAAATCTTTATCATCTTAGAGCTCTGATACTATTTAGAATTACTATTCCTTCAAATAAGAGATTAGAAACAGGGTTATATTTGGGGTAGGTTGACTTACTTTTCTGGGAACCAAA GCATATTAAATTGACCAGTTTTAACACACTTCTATGTATGCACAAAGATATATATTTACATTCTGCAAAATCATTCTTTCCTTTTTGAATTTGAAAAGGATCTTTGGTATACAGATATTCAATAGCCAGCCTGAAGATTCATTTGAAT TCATTTAATGTTTAGATTCACTACATGAAATGATCCAGAAGAGAGTACTCAAATATAAGTATCTATAACGATGGAAATATACATCTCCACTGCCCAAGATGGTAGTCATGAGTCAATATTGATCATGTGAGACGTGGCAAGTGTTACT CAGGGTCTCAATATTTAAATGTATTAAGCTTTAATTAATGTAAATTTGAATTTAGCAAAACATGTATAGCTTGTGGTTACTGTTTTATTCAGTGCCAATATAGAACATTTCCATGATTACAGAAAGTTATCTTAGAATACTCAGTTCT GGACTATTTTATCTGGCTAAATTAAATGTTAAAATATTACAAATTCATCTTCAGGCTGGCTGTTGAATATTTTTATAGCAAAAGTCATTTATAAATTTAAAACTCAAATAATTATCTTTTTCAATATGTAAAATATGTCTTTACATAT TCTACTCCCTTCTTACATACATATTCTGATGTAACATAGGTATTCTCTTATTCATGCACACTGAAATGACAACATAAATAATTTTACTAAGTGTCACCATATAAAAAACTTTGAACAAAATCAGATTATATCACTGTGGATATTTCTA TTTTGAACTAACTTAGATGATAATTTTAATCTATATCCTAGATGAACTTTAAATCAATAAAATCTCTCAATGGTGTTATAAATCTCAAGCCATTAGCCACTGATTATCCCATTTTTATTCTTTTCATATTAATTTTATTGCCATGTAT GAATGCTGTAGCATCCATGTTTAAATACTAGTTAACAAAATGCACTGGCATCAGATACAATAAGGATGAAATGAGATATAATTAGGACTCTGGTAACACACATAAAATTGGAAAGATACCCTGAAATTCAAGCCAAGAAGATATTTAT CCAGCTTATTTTATTTTGAGACAGAGTCTTGCTCTCTCACTCAGGCTGGAGTGCAGTGGACCATTCTAGGCTCGCTCCAACCTCTGTCTCCCAAATTGAAGTAATTCTCGTGCCTCAATCTCCCGAGTAGCTGGGATTACAGGCATGT GTCACCAAGCCTGGCTGATTTTTGTAGTTTTAGTAGAGACGGGGTTTCACCATGATGGCCAGGCTGGTCTTGAACTCCTGGCCTCAAGTGACTGGAACACCTCGGCCTCCTAAAGTGCTGGGATTACAGACGAGAGCCACTGAACAGC TTTGATCCAACTTATTTGGATGAATGAGTTACATATTTTACATTAAATCTGTTATTGTGATAATTCTTCATGTTATTTTCCATGTATAGATTTATATATAATGTAATTTTAATTTTTTTTCACCGGAGAGTATAAACAACAATTATTT TATAAACAGGATAATAAAAATAAGACAAAAATTGTTGAAATGTCTTCATTTGACTACTAACTTTTTACATGTTTGTTACTTTGAAGCTGTTATCAATACTTGTGATGTATTACAATTAAGTAAAGATTTAAAGATGCCATTTTTAACT TATTATGACACAAAGTCTATAAATTCTTATATTTTGAGATTTGTATTTAAATAACTTGTGAAATTTAATTTTAAAATAAAATTTCTTCTATGGATTGGTCTTCAATCGAGGCATAAAAAGGAATATAACAGTGTGGCACTATAACTTC TATATTGAATTTCTATATTATTTAACACAATTATAATTTTGCTAATGAATTGTAATGTTTTTAAAAAGCTAGGTGAATTTTATTAAATTCATTACATGGCGATAACACAGAGAAAACATTTTGGGGATTCTTTTAAAATGGTATGTAC AAAAGCTTAAAAGTTGTTATGTAGTGGCAGAGATAAAAAAGTAAAACAAAAAAAAGCTTAAAAGTTTGCTTTACTATTTATAGGCTCATAAGTGTAAGTGTGCCAGAAAATGAAAAAGAAAGGAGAGAAATTATAAATAACTGTGTGG AAAACACAGATAAAGCATAAAGATAGAATATAAAGATAGAAGCATTTTAATATGAGGCAGTGATGGCTTTTTGAAGAATCCCAACTAAGGACCTACTTTTAGTTAATAAATAATATGTTTCTAATCCCTATATTGTCCACAGCAACCT TTTTAGGACATGGAGCAGTGACTATGAGTGCCAGAAGGCAAGAGTAGAAGCAATTGTAAAATCATGAACACTAGTTTGTAAAATCCTCACTGAGATATAATATCTGTTTGCCTCTACCTTAGAATTATTAATGTCTTGAGGGCTGGGA A very small piece of chromosome 21 Model organisms Sequenced / in progress: Phil Hieter THANK YOU