Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
DNA and RNA Chapter 12 Hereditary Material • Genes code for PROTEINS! • Genes are found on chromosomes. • Chromosomes are made up of DNA. Chromosome Structure • Chromatin is tightly coiled around proteins called histones. • DNA and histone molecules form a beadlike structure: nucleosome • Nucleosomes create the supercoils of DNA in a chromosome. Chromosome Structure of Eukaryotes Nucleosome Chromosome Coils Supercoils DNA double Histones helix Structure of DNA • In eukaryotes, DNA is found in the NUCLEUS of cells. • DNA is made up of a series of monomers called nucleotides. Nucleotide structure: 1. 5–carbon sugar: Deoxyribose 2. Phosphate group 3. Nitrogen base • DNA is a twisted-ladder called a DOUBLE HELIX! DNA Nucleotide Phosphate Group O O=P-O O 5 CH2 O N C1 C4 Sugar (deoxyribose) C3 C2 Nitrogen base (A, G, C, or T) Nitrogen Bases • Double ring PURINES Adenine (A) Guanine (G) A or G • Single ring PYRIMIDINES Thymine (T) Cytosine (C) T or C Chargaff’s (Base Pairing) Rule • Adenine must pair with Thymine • Guanine must pair with Cytosine • Hydrogen bonds hold them together Why do they pair together this way? T A G C DNA Double Helix “Rungs of ladder” Nitrogen Base (A,T,G or C) “Legs of ladder” Phosphate & Sugar Backbone DNA Structure Nucleotide Hydrogen bonds Sugar-phosphate backbone Key Adenine (A) Thymine (T) Cytosine (C) Guanine (G) DNA Replication • Occurs during cell division. (What phase of cell cycle? WHY does this process happen?) • Helicase “unzips” DNA, breaking the hydrogen bonds. • DNA polymerase bonds free nucleotides together – Complementary bonding only (A-T/G-C) – Checks for errors DNA Replication is SEMI-CONSERVATIVE! DNA Replication New strand Original strand DNA polymerase Growth DNA polymerase Growth Replication fork Replication fork New strand Original strand Nitrogenous bases The History of DNA The important scientists to know! Griffith’s “Transformation” Experiment • One strain of bacteria was “transformed” into another strain. Avery’s experiment isolated the element that caused the bacterial to become lethal…DNA Hershey-Chase Experiment Section 12-1 Bacteriophage with phosphorus-32 in DNA Phage infects bacterium Radioactivity inside bacterium Bacteriophage with sulfur-35 in protein coat Phage infects bacterium No radioactivity inside bacterium DNA is confirmed to be the genetic material. Chargaff and Franklin • Chargaff Percentages of C/G and A/T bases are almost equal in any sample of DNA All organisms followed this rule • Rosalind Franklin X-Ray picture showed that DNA was twisted into a double helix. Watson and Crick • Discovered the molecular structure of DNA RNA and Protein Synthesis Section 12-3 RNA • • • • • • Long, single strand (not a helix) Nitrogen bases: A,U,G,C (no Thymine!) Sugar: Ribose Location: cytoplasm and nucleus Types: messenger, transfer, ribosomal Function: Makes proteins!! Protein Synthesis occurs in two phases: TRANSCRIPTION TRANSLATION Transcription • Location where it occurs: Nucleus • RNA polymerase will unwind DNA at the region to be transcribed. • It locates and binds at the promoter. (site on DNA to start transcription) Transcription Animation • mRNA is then made by base-pairing: If DNA sequence is: GATTACA Then mRNA sequence is: CUAAUGU • When finished, mRNA leaves the nucleus and goes to the cytoplasm. Section 12-3 Transcription Adenine (DNA and RNA) Cystosine (DNA and RNA) Guanine(DNA and RNA) Thymine (DNA only) Uracil (RNA only) RNA polymerase DNA RNA Translation Location: Cytoplasm mRNA finds a ribosome Ribosome reads strand for the start “codon” A codon is a mRNA triplet. Ex: AUG, UUC, etc Start codon is: AUG Transfer RNA’s bring amino acids to ribosome. Translation continued… • tRNA’s anticodon bonds with mRNA codon. mRNA codons AUG UAA CGC tRNA anticodons UAC AUU GCG • Amino acids connected with peptide bonds. • When a “Stop” codon is reached. Protein is released from ribosome. Translation Section 12-3 Animation How to Interpret m-RNA’s Code: • Each 3 nitrogen base sequence is called a CODON. • Each codon specifies for a particular amino acid. • AUG codon starts the initiation of the protein and codes for the amino acid methionine. • Stop codons do not code for any amino acids ending the protein chain. • A polypeptide is a chain of amino acids joined with peptide bonds – aka a PROTEIN! Codon Chart #1 Codon Chart #2 Section 12-3 Let’s Practice! DNA: mRNA: tRNA: TACTTGGAT AUGAACCUA UACUUGGAU AA Sequence: Methionine, Asparagine, Leucine Mutations Section 12-4 Mutations • Changes that occur in the DNA • Two types: 1. Gene mutations 2. Chromosomal mutations • Many mutations are harmless • Pros: increase adaptation or survival • Cons: some can be lethal or debilitating Gene Mutations • Changes that occur in a single gene. • Point mutations: one nucleotide that affects one amino acid. (substitutions produce point mutations) • Frameshift mutations: involve the reading of the DNA or m-RNA strand; many amino acids are affected. (insertion or deletions produce frameshift mutations) Gene Mutations Frameshift mutations Point mutation: Substitution Insertion Deletion Chromosomal Mutations • Whole chromosome is affected. • Four types: 1. Deletion – loss of material 2. Duplication – addition of material 3. Inversion – rearrangement of material 4. Translocation – switching material with another chromosome Chromosomal Mutations Deletion Duplication Inversion Translocation