Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CMOS Analog Integrated Circuits: Models, Analysis, & Design Dr. John Choma, Jr. Professor of Electrical Engineering University of Southern California Department of Electrical Engineering-Electrophysics University Park; Mail Code: 0271 Los Angeles, California 90089-0271 213-740-4692 [OFF] 626-915-7503 [HOME] 626-915-0944 [FAX] johnc@almaak.usc.edu (E-MAIL) EE448 MOS Circuit Level Models Fall 2001 Lecture Overview •Static Model Cutoff Region Ohmic (Triode) Region Model Saturation Region Model Subthreshold Model •Short Channel Effects In Saturation Channel Length Modulation Substrate/Bulk Phenomena Mobility Degradation Carrier Velocity Saturation •Small Signal Model In Saturation Forward Transconductance Bulk Transconductance Capacitances •Sample Circuit Analysis (Inverter) Gain Bandwidth 2 N–Channel MOSFET Ld L S Ld G D Silicon Dioxide Tox N+ Source N+ Drain Xd P–Type Substrate (Concentration = ND cm-3 ) B d V gd Ig Ig b B V gs Is = Id +Ig +Ib I G I D I s Vds Ib V Is bs 0, for S V ds 0 V bs < 0 Id = V gs – V gd 3 P–Channel MOSFET Ld L S Ld G D Silicon Dioxide Tox P+ Source P+ Drain Xd N–Type Substrate (Concentration = ND cm-3 ) B Vdg G I I I b B sg Ig d g V Is = Id +Ig +Ib D I s Vsd V 0, for Is sb Ib S 0 V sb < 0 Id V sd = V sg – V d g 4 Characteristic Curves: Cutoff And Ohmic Regimes l l l Cutoff Regime: Vgs < Vhn Id = 0 V hn Threshold Voltage, Function Of Bulk–Source Voltage Ohmic Regime: V gs V hn Id K n = µ n C ox = = Kn W L V ds and V ds V ds V gs – V hn – 2 µ n ox T ox < V gs – V hn (Hundreds Of µmhos/Volt) Comments W/L Is Gate–Channel Aspect Ratio, A Designable Parameter Vds = Vgs – Vgd < Vgs – Vhn Implies Vgd > Vhn Temperature Effects (Holes And Electrons):µ(T) µ(To) / 3 2 Resistance For Small Drain–Source Voltage: Id V ds To T 1 R ds = Kn W L V gs – V hn – V ds = Id V ds V gs – V hn – V ds V gs – V hn – V ds 2 Id V ds 5 Characteristic Curves: Saturated Regime l Kn 2 Id V dss l Saturation Regime: V gs – V hn I dss = Kn 2 = W L W L V gs V hn V gs – V hn V ds & V gs – V hn 2 Drain Saturation Voltage 2 V dss Drain Saturation Current Comments Square Law Voltage–Controlled Current Source Drain Current Shows Negative Temperature Coefficient Because Of Its Proportionality To Mobility Differential Current Of Two Matched Devices Is Linear With VDM Differential Gate–Source Voltage , Provided Common Mode VCM Gate–Source Voltage Is A Constant I d1 – I d2 = Kn 2 W L I d1 – I d2 = Kn W L I d1 – I d2 = Kn W L V gs1 – V hn V gs1 + V gs2 2 V CM – V hn 2 – – V hn V DM V gs2 – V hn 2 V gs1 – V gs2 6 Simple Differential Pair R – Vo Id1 l Inputs +VDD c R V gs1 = V CM + V DM 2 Id2 V gs2 = V CM – V DM 2 + c VDM 2 + M1 c M2 – – VDM + Vgs1 + Vgs2 = 2 VCM Vgs1 – Vgs2 = V DM 2 c + VCM – l Response I d1 – I d2 = Kn W L V o = R I d1 – I d2 l V CM – V hn = Kn R W L V DM V CM – V hn V DM Note Differential Output Current And Voltage Are Linear With Respect To Differential Input Voltage Without Invoking Small Signal Approximation 6a Characteristic Curves: Subthreshold Regime l Subthreshold Regime: VT = s 1.2 < n s l kT q s Vgs < Vhn + 2 n VT & Vds • 3 VT = 26 mV @ 27 8C < 2.0 I d = 2K n W L n VT 2 e ( V gs – V hn ) n V T / Comments Bipolar Type I–V Action Indigenous To Subthreshold Regime s Subthreshold Operation Corresponds To Gate–Channel Interface Potentials Lying Between One And Two Fermi Potentials s Useful Only For Low Speed, Low Power Applications s 7 Sample Simplified MOS Static Characteristics Drain Current (microamperes) 700 5 volts 600 500 Drain Saturation Current Ohmic Regime 400 Kn 4 volts 300 = 80 µmho/volt V hn = 1.2 volts Saturation Regime 200 W L 3 volts 100 Gate-Source Voltage = 2 volts 0 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 Drain-Source Voltage (volts) 8 Cutoff Regime V S ds V c gs G l D SiO 2 Depletion V ds I d 0 0 < V gs < V hn V bs 0 Fixed Immobile Charges DEPLETION LAYER, V ds 0 DEPLETION LAYER, V ds = 0 P–Type Substrate V bs l Zero Current N+ Drain N+ Source l Vgs l V ox Voltage Across l Vy = Vox + Vy Oxide Interface Potential B 9 Channel Inversion: Ohmic Regime G S D V gs P–Type Substrate V ds > V hn = 0 L G S D V gs > V hn 0 V ds Vdss DVds L' V gs – V hn V gd > V hn DL P–Type Substrate Metal or Polysilicon Inversion Layer Silicon Dioxide Depletion 10 Channel Inversion: Saturation Regime G S D V gs > V hn 0 V ds P–Type Substrate = V gs – V hn V gd V hn L G S D V gs > V hn 0 V ds > V gs – V hn V gd < V hn Vdss Vds L L' P–Type Substrate Metal or Polysilicon Inversion Layer Silicon Dioxide Depletion 11 Channel Length Modulation G S D Vdss V ds L' l Id | l V DL Modified Saturation Regime Current = I dss V ds > V dss L L – L = Kn 2 W L V gs – V hn 2 1 + V ds – V dss V Channel Modulation Voltage = L 2 q NA s V ds – V dss + V j (Typically Under 20 Volts And As Small As 1/3 Volt For Deep Submicron MOSFETs) Vdss Vj = = Vgs – V hn ND NA kT ln q 2 N iB 12 Channel Length Modulation Parameters l Id | Modified Saturation Regime Current = I dss V ds > V dss Vdss Vj = L L– L = Kn 2 W L = Vgs – V hn ND NA kT ln q 2 N iB V = L V gs – V hn 2 q NA s 2 1 + V ds – V dss V V ds – V dss + V j l Parameters N A Average Substrate Impurity Concentration es Dielectric Constant Of Silicon (1.05 pF/cm) q Electronic Charge Magnitude Vl Channel Length Modulation Voltage Vj Built In Substrate–Drain/Source Junction Potential l Note Large Channel Length Reduces Channel Modulation Small Substrate Concentration Increases Channel Modulation 13 Substrate/Bulk Phenomena l Effect On Threshold Voltage l l Id = Kn 2 W L V gs – V hnc V = V F = V T ln 2 C ox 1 + V VF – VT V h = V ho + 2 q N A s 2 = q NA NA N iB T ox s ox V ds – V dss V 1 – 2 V bs 2 VF – VT – 1 (High Hundreds Of µVolts (Few Tenths Of Volts) Parameters VF Fermi Potential; Renders Channel Surface Intrinsic N iB Intrinsic Carrier Concentration In Substrate ox Dielectric Constant Of Silicon Dioxide (345 fF/cm) Note Small Oxide Thickness Reduces Threshold Modulation Small Substrate Concentration Reduces Threshold Modulation 14 Threshold Voltage Modulation Threshold Correction (volts) 0.7 0.6 Oxide Thickness = 1,500 A 0.5 N iB = 10 10 cm –3 ; N A = (10) 14 cm 0.4 –3 0.3 750 A 0.2 0.1 50 A 100 A 0 -6 -5 -4 -3 -2 -1 0 Bulk–Source Voltage, Vbs (volts) 15 Mobility Degradation Due To Vertical Field l Electric Field Problems Thin Oxide Layers Conduce Large Gate -To- Channel Fields For Even Small -To- Moderate Gate–Source Voltages These Enhanced Fields Impart Increasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities l Mobility: V gs – V hnc VE 1 + VE l µn µ neff 6 (500)(10 ) T ox (Low Hundreds Of Volts) Parameters µneff Effective Carrier Mobility In Channel VE Vertical Field Degradation Voltage Parameter Crude One Dimension Approximation To Two Dimensional Problem VE T ox in MKS Units Yields In Volts 16 Impact Of Mobility Degradation l Static Drain Current K n = µ n C ox K neff l Id = Kn 2 W L = µ neff C ox V gs – V hnc 2 1 + V ds – V dss V V gs – V hnc 1 + VE Other Effects Reduced Bandwidth And Increased Carrier Transit Time Smaller Current For Given Gate–Source Bias Reduced Forward Transconductance 17 Mobility Degradation Due To Lateral Field l Electric Field Problems Short Channels Conduce Large Drain -To- Source Fields For Even Small -To- Moderate Drain–Source Voltages These Enhanced Fields Impart Increasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities At Very Large Horizontal Fields, Carrier Velocities Ultimately Saturate To A Value vOf , Which Is About 0.1 µm/pSEC sat Saturation Occurs When Horizontal E Field, ,Equals Or Exceeds A h Ec Critical Value, , Which Is About 5 V/µm l Mobility And Field µn µ ne Eh 1 + = v sat Ec + Eh Ec v sat = µ n E c v = µ ne E h Eh V gs – V hn L µn E h Eh 1 + Ec 18 Velocity – Mobility – Field Relationships Carrier Velocity (µm/psec) 0.1 Normalized Carrier Mobility 1 0.09 0.9 Carrier Velocity 0.08 0.8 0.07 0.7 0.06 0.6 0.05 0.5 0.04 0.4 Normalized Mobility 0.03 0.3 0.02 0.2 0.01 0.1 0 0 0 5 10 15 20 25 30 35 40 45 50 Lateral Electric Field (V/µm) 18a Mobility And Lateral Field l Mobility And Field l µ ne Eh µn Eh 1 + Ec V gs – V hnc L = µn V gs – V hnc 1 + L Ec = µn V dss 1 + L Ec V dss L Electric Field Problems Eh Crude Approximation For Horizontal Field, Free Carriers Exist Only Over Channel Where Voltage With Vdss = Vgs – Vhnc Respect To The Source Is At Most Channel Length, L, Should Be Effective Channel Length, L', But This Shrinkage Is Already Accounted For By Channel Length Modulation Voltage Parameter, V L E c Is About 1.75 Volts For L = 0.35 µm 19 Volt–Ampere Impact Of High Lateral Field l Static Drain Current K n = µ n C ox K neff = µ neff C ox 2 l Kn 2 W L 1 + V ds – V dss V V gs – V hnc 1 + L Ec Very High Fields l Id = (Vgs – V hnc ) Vgs – Vhnc Id >> L E c W C ox v sat 2 V gs – V hnc 1 + V ds – V dss Vl Comments Drain Current Scales Approximately With W, As Opposed To W/L Drain Current Almost Linear W/R To Gate–Source Voltage 20 MOS Large Signal Model D Cold id c rdd Cgd c Static Drain Current c c DBD c rdb Id G c C gd Gate-Drain Capacitance C gs Gate-Source Capacitance C db Drain-Bulk Capacitance C sb Source-Bulk Capacitance C old Drain Overlap Capacitance Cdb DBS c c c c c B r ss Source Overlap Capacitance Drain Ohmic Resistance Source Ohmic Resistance r bb Bulk Ohmic Resistance Bulk-Drain Diode r sb Bulk-Source Diode r db Bulk Spreading Resistance Bulk Spreading Resistance rsb Cgs rss c rbb Csb Cols C ols r dd S DBD DBS 21 Device Capacitances In Saturation D Cold C gd + C old id C old c rdd Cgd c C gs c c DBD c rdb C db Id G = W L C ox = Cdb DBS c c c c c rsb Cgs rss c B rbb C sb 1 – Large (Hundreds Of fF) C sb Large (Hundreds Of fF) Moderate (High Tens Of fF) C gd , C old , C ols Small (Tens Of fF) V bd Vj V bs Vj C ols = W L d C ox Ad Drain-Bulk Junction Area Source-Bulk Junction Area Zero Bias Depletion S C db Ld L As + W L C jo Csb Cols C gs = + Ad C jo 1 – c 2 3 = W L d C ox As C jo Capacitance Density 22 Approximate (Long Channel) Small Signal Model C old g mf D Cgd Cdb c c c c gmf vga gmb vba go Cgs Csb c c c vga + c vba c b = + go c B C ols S g mb G c I d V gs | I d V bs | 2K n W L I dQ Q = b g mf Q V/ 2 2 V F – V T – V bsQ I d V ds | Q I dQ V + V ds – V dss Assumptions l All Series Ohmic Resistances Are Negligible Transistor Operates In Saturation Regime "Long Channel" Approximation Invoked For Static Drain Current Model To Be Used As A Precursor To Computer–Based Studies 23 Short Channel Small Signal Model l Drain Current: Id = Kn 2 W L l Intermediate Parameters: l Forward Transconductance: g mfs l Output Conductance: 2 1 + V ds – V dss V V gs – V hnc 1 + L Ec V ds – V dss V f = f W L c = V dss LEc g mf = 2Kn b = V/ 2 2 V F – V T – V bsQ = g mf l Bulk Transconductance: V gs – V hnc 1+f 1+f c 1– I dQ V dss / 2 V f 2 – c/ 1+f 1+f c g mbs = b g mfs go = I dQ V + V ds – V dss 24 Hypothetical Device l Physical Parameters N A = 5 (10) 14 cm N D = 5 (10) 20 cm N iB = (10) 10 cm l Device Parameters –3 T ox = 50 Angstroms –3 L = 0.35 µm –3 Vhn = 0.65 volts s = 1.05 pF/cm ox = 345 fF/cm µn = 400 cm 2 / volt-sec E c = 4 volts / µm T = 300 8K W/ L = 5 l Circuit Parameters Vds = 2 volts Vgs = 1.2 volts Vbs = –3 volts 25 Static Performance l Peripheral Calculations VF = 280.0 mV (Fermi Potential) Vj = 917.4 mV (Junction Potential) Vu = 176.4 µV (Body Effect Potential) V hnc = 685.2 mV (Compensated Threshold) V hn = 35.2 mV Vdss = 514.8 mV (Drain Saturation Voltage) V = 669.7 mV (Channel Length Voltage) L E c = 1.4 volts (Lateral Field Voltage) K n = 276.0 µmho / volt (Transconductance Parameter) f = 2.218 (Channel Length Parameter) f c = 0.368 (Lateral Field Parameter) l Static Drain Current I d = 182.9 µA (Long Channel Drain Current) I d = 430.2 µA (Short Channel Drain Current) Note Short Channel -To- Long Channel Ratio of 2.35; Ratio Is Generally Between 1.5 And 3.0 26 Small Signal Parameters l Forward Transconductance gmf = 1.09 mmho (Ignoring Short Channel Effects) gmf = 1.25 mmho (Incorporating Short Channel Effects) Note Short Channel -To- Long Channel Ratio of 1.14; Ratio Is Generally Between 0.5 And 2.0 l Bulk Transconductance (Bulk Parameter) b = 5.0 2 (10) –3 gmb = 6.25 µmho (Incorporating Short Channel Effects) Note Bulk Transconductance Is About 200 Times Smaller Than Forward Transconductance l Drain–Source Conductance go = 199.7 µmho (Incorporating Short Channel Effects) Corresponds To Shunt Output Resistance Of About 5 K Mandates Conductance Enhancement Strategies When Designing High Performance Transconductors 27 Device Unity Gain Frequency D V dd Cgd + Cold AC Short Circuit c c I bias Cbig g c mf c i in l l i out c i out i in T = c c v g 1 go v mb 2 i out c Cgs + Cols i in G+ v 1 S v 2 + B g mf – s C gd + C old s C gs + C ols + C gd + C old C gs g mf + C ols + C gd + C old µ n V gs – V hn 3L d 2 2 L + 3 L l Comments Unity Gain Frequency Is Good Device Figure Of Merit; Crude Circuit Performance Figure Of Merit Result Assumes T C gd << gmf 28 Common Source Inverter ML c VDD R Leff c c + Vs VGG – + c Vo MD R Leff c Vos MD CL CL c + Vs c – – Schematic Diagram AC Schematic Diagram 29 Inverter Load Resistance Calculations rddl ML c c c + Vx – g mbl vba g mfl vga Ix + vga – c c rol c – vba + rssl rbbl + Vx v ga Vx = R Leff Vx Ix = v ba r ssl + r ddl = r ssl + – Ix = – V x + r ssl I x I x + r ol I x + g mfl v ga + g mbl v ba 1 + r ddl + r ol 1 + bl g mfl r ol 1 1 + bl g mfl 30 Inverter Gain Calculations R' c R Leff c c rddd Vos MD Vs c + vga – – g mfd vga Vs V os Vs = – 1 + R Leff CL c c c – vba + rssd rbbd – gmfd R Leff R Leff + r ddd + r ssd 1 + bd gmfd r ssd + r od Av Ignore For Low Frequencies rod g mbd vba + Av = Vos c c CL + R out – 1 1 + bl – gmfd R Leff – gmfd 1 + bl gmfl Wd /L Wl/L 31 Inverter Bandwidth Calculations + rddd R' Vx – Ix c g mfd vga + vga – c rod g mbd vba c c – vba + rssd B 3dB = R Vx Ix = 1 R Leff C L R out C L 1 = R / | R Leff C L = r ddd + r ssd + 1 + bl g mfl CL 1 R Leff C L 1 + 1 + bl g mfd r ssd r od GBP B 3dB / 1 rbbd A v B 3dB = g mfd CL 32