Download CMOS - Engineering Class Home Pages

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CMOS Analog Integrated Circuits:
Models, Analysis, & Design
Dr. John Choma, Jr.
Professor of Electrical Engineering
University of Southern California
Department of Electrical Engineering-Electrophysics
University Park; Mail Code: 0271
Los Angeles, California 90089-0271
213-740-4692 [OFF]
626-915-7503 [HOME]
626-915-0944 [FAX]
johnc@almaak.usc.edu (E-MAIL)
EE448
MOS Circuit Level Models
Fall 2001
Lecture Overview
•Static Model
Cutoff Region
Ohmic (Triode) Region Model
Saturation Region Model
Subthreshold Model
•Short Channel Effects In Saturation
Channel Length Modulation
Substrate/Bulk Phenomena
Mobility Degradation
Carrier Velocity Saturation
•Small Signal Model In Saturation
Forward Transconductance
Bulk Transconductance
Capacitances
•Sample Circuit Analysis (Inverter)
Gain
Bandwidth
2
N–Channel MOSFET
Ld
L
S
Ld
G
D
Silicon Dioxide
Tox
N+
Source
N+
Drain
Xd
P–Type Substrate
(Concentration = ND cm-3
)
B

d
V

gd
Ig
Ig 
b

B

V
gs
Is = Id +Ig +Ib
I
G


I
D
I
s
Vds
Ib 
V
Is 
bs


0, for
S
V ds
0
V bs < 0
Id
= V gs – V gd
3
P–Channel MOSFET
Ld
L
S
Ld
G
D
Silicon Dioxide
Tox
P+
Source
P+
Drain
Xd
N–Type Substrate
(Concentration = ND cm-3 )
B

Vdg

G

I
I
I
b


B

sg
Ig
d
g
V
Is = Id +Ig +Ib
D
I
s
Vsd
V

0, for
Is
sb

Ib

S


0
V sb < 0
Id
V sd = V sg – V d g
4
Characteristic Curves: Cutoff And Ohmic Regimes
l
l
l
Cutoff Regime: Vgs < Vhn
 Id = 0
 V hn 
Threshold Voltage, Function Of Bulk–Source Voltage
Ohmic Regime:
V gs  V hn

Id

K n = µ n C ox =
= Kn
W
L
V ds
and
V ds
V ds
V gs – V hn –
2
µ n  ox
T ox
< V gs – V hn
(Hundreds Of µmhos/Volt)
Comments

W/L Is Gate–Channel Aspect Ratio, A Designable Parameter
 Vds = Vgs – Vgd < Vgs – Vhn Implies Vgd > Vhn
 Temperature Effects (Holes And Electrons):µ(T)

µ(To)
/
3 2
Resistance For Small Drain–Source Voltage:

 Id
V ds

To
T
1
R ds
= Kn
W
L
V gs – V hn – V ds
=
Id
V ds
V gs – V hn – V ds
V gs – V hn –
V ds
2

Id
V ds
5
Characteristic Curves: Saturated Regime
l
Kn
2

Id

V dss

l
Saturation Regime:
V gs – V hn

I dss
=
Kn
2
=
W
L
W
L
V gs  V hn
V gs – V hn
V ds 
&
V gs – V hn
2
 Drain Saturation Voltage
2
V dss
 Drain Saturation Current
Comments
 Square Law Voltage–Controlled Current Source
 Drain Current Shows Negative Temperature Coefficient
Because Of Its Proportionality To Mobility
 Differential Current Of Two Matched Devices Is Linear With
VDM
Differential Gate–Source Voltage
, Provided Common Mode
VCM
Gate–Source Voltage
Is A Constant
I d1 – I d2
=
Kn
2
W
L
I d1 – I d2
= Kn
W
L
I d1 – I d2
= Kn
W
L
V gs1 – V hn
V gs1 + V gs2
2
V CM – V hn
2
–
– V hn
V DM
V gs2 – V hn
2
V gs1 – V gs2
6
Simple Differential Pair
R
–
Vo
Id1
l Inputs
+VDD
c
R
V gs1
= V CM +
V DM
2
Id2
V gs2
= V CM –
V DM
2
+
c
VDM
2
+
M1
c
M2
–
–
VDM
+
Vgs1 + Vgs2
= 2 VCM
Vgs1 – Vgs2
= V DM
2
c
+
VCM
–
l Response
I d1 – I d2
= Kn
W
L
V o = R I d1 – I d2
l
V CM – V hn
= Kn R
W
L
V DM
V CM – V hn
V DM
Note Differential Output Current And Voltage Are Linear With Respect
To Differential Input Voltage Without Invoking Small Signal Approximation
6a
Characteristic Curves: Subthreshold Regime
l
Subthreshold Regime:
VT =
s
1.2 < n
s
l
kT
q
s
Vgs
< Vhn + 2 n VT & Vds
• 3 VT
= 26 mV @ 27 8C
< 2.0
I d = 2K n
W
L
n VT

2
e
( V gs – V hn ) n V T
/
Comments
Bipolar Type I–V Action Indigenous To Subthreshold Regime
s Subthreshold Operation Corresponds To Gate–Channel Interface
Potentials Lying Between One And Two Fermi Potentials
s Useful Only For Low Speed, Low Power Applications
s
7
Sample Simplified MOS Static Characteristics
Drain Current (microamperes)
700
5 volts
600
500
Drain
Saturation
Current
Ohmic
Regime
400
Kn
4 volts
300
= 80 µmho/volt
V hn = 1.2 volts
Saturation
Regime
200
W
L
3 volts
100
Gate-Source Voltage = 2 volts
0
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
4.4
4.8
Drain-Source Voltage (volts)
8
Cutoff Regime
V

S
ds

V

c
gs

G
l
D
SiO 2
Depletion
V ds
I
d
 0
0 < V gs < V hn
V bs  0
Fixed
Immobile
Charges
DEPLETION
LAYER, V ds  0
DEPLETION
LAYER, V ds = 0
P–Type Substrate

V
bs
l Zero Current
N+
Drain
N+
Source
            
l
Vgs
l
V ox  Voltage Across
l
Vy 
= Vox + Vy
Oxide
Interface
Potential

B
9
Channel Inversion: Ohmic Regime
G
S
D
V gs
P–Type
Substrate
V ds
> V hn
= 0
L
G
S
D
V gs > V hn
0  V ds 

Vdss
  DVds
L'
V gs – V hn
V gd > V hn

DL
P–Type
Substrate
Metal or Polysilicon
Inversion Layer
Silicon Dioxide
Depletion
10
Channel Inversion: Saturation Regime
G
S
D
V gs > V hn
0  V ds
P–Type
Substrate
= V gs – V hn
V gd 
V hn
L
G
S
D
V gs > V hn
0
V ds
> V gs – V hn
V gd < V hn

Vdss
  Vds

L
L'
P–Type
Substrate
Metal or Polysilicon
Inversion Layer
Silicon Dioxide
Depletion
11
Channel Length Modulation
G
S
D

Vdss
  V
ds
L'
l
Id
|
l
V

DL
Modified Saturation Regime Current
= I dss
V ds > V dss
L
L – L
=
Kn
2
W
L
V gs – V hn
2
1 +
V ds – V dss
V
Channel Modulation Voltage
= L
2 q NA
s
V ds – V dss + V j
(Typically Under 20 Volts And
As Small As 1/3 Volt For Deep
Submicron MOSFETs)
Vdss
Vj =
= Vgs – V hn
ND NA
kT
ln
q
2
N iB
12
Channel Length Modulation Parameters
l
Id
|
Modified Saturation Regime Current
= I dss
V ds > V dss
Vdss
Vj =
L
L– L
=
Kn
2
W
L
= Vgs – V hn
ND NA
kT
ln
q
2
N iB
V = L
V gs – V hn
2 q NA
s
2
1 +
V ds – V dss
V
V ds – V dss + V j
l
Parameters
 N A  Average Substrate Impurity Concentration
es

 Dielectric Constant Of Silicon (1.05 pF/cm)
q

 Electronic Charge Magnitude
Vl

 Channel Length Modulation Voltage
Vj

 Built In Substrate–Drain/Source Junction Potential
l
Note
 Large Channel Length Reduces Channel Modulation
 Small Substrate Concentration Increases Channel Modulation
13
Substrate/Bulk Phenomena
l
Effect On Threshold Voltage


l
l
Id =
Kn
2
W
L
V gs – V hnc

V =

V F = V T ln
2
C ox
1 +
V VF – VT
V h = V ho + 2
q N A s
2
= q NA 
NA
N iB
T ox
s
ox
V ds – V dss
V
1 –
2
V bs
2 VF – VT
– 1
(High Hundreds Of µVolts
(Few Tenths Of Volts)
Parameters
 VF  Fermi Potential; Renders Channel Surface Intrinsic
N iB  Intrinsic Carrier Concentration In Substrate


ox  Dielectric Constant Of Silicon Dioxide (345 fF/cm)
Note
 Small Oxide Thickness Reduces Threshold Modulation
 Small Substrate Concentration Reduces Threshold Modulation
14
Threshold Voltage Modulation
Threshold Correction (volts)
0.7
0.6
Oxide Thickness = 1,500 A
0.5
N iB = 10
10
cm
–3
;
N A = (10)
14
cm
0.4
–3
0.3
750 A
0.2
0.1
50 A
100 A
0
-6
-5
-4
-3
-2
-1
0
Bulk–Source Voltage, Vbs (volts)
15
Mobility Degradation Due To Vertical Field
l
Electric Field Problems
 Thin Oxide Layers Conduce Large Gate -To- Channel Fields
For Even Small -To- Moderate Gate–Source Voltages
 These Enhanced Fields Impart Increasing Energies To Carriers,
Thereby Causing More Carrier Collisions And Degraded Mobilities
l
Mobility:
V gs – V hnc
VE
1 +
VE
l
µn

µ neff

6
(500)(10 ) T ox
(Low Hundreds Of Volts)
Parameters
 µneff  Effective Carrier Mobility In Channel
 VE  Vertical Field Degradation Voltage Parameter
 Crude One Dimension Approximation To Two Dimensional Problem
VE
 T ox in MKS Units Yields
In Volts
16
Impact Of Mobility Degradation
l
Static Drain Current
K n = µ n C ox  K neff


l
Id =
Kn
2
W
L
= µ neff C ox
V gs – V hnc
2
1 +
V ds – V dss
V
V gs – V hnc
1 +
VE
Other Effects
 Reduced Bandwidth And Increased Carrier Transit Time
 Smaller Current For Given Gate–Source Bias
 Reduced Forward Transconductance
17
Mobility Degradation Due To Lateral Field
l
Electric Field Problems
 Short Channels Conduce Large Drain -To- Source Fields
For Even Small -To- Moderate Drain–Source Voltages
 These Enhanced Fields Impart Increasing Energies To Carriers,
Thereby Causing More Carrier Collisions And Degraded Mobilities
 At Very Large Horizontal Fields, Carrier Velocities Ultimately
Saturate To A Value vOf
, Which Is About 0.1 µm/pSEC
sat
 Saturation Occurs When Horizontal E
Field,
,Equals Or Exceeds A
h
Ec
Critical Value,
, Which Is About 5 V/µm
l
Mobility And Field
µn

µ ne 
Eh
1 +



=
v sat
Ec + Eh
Ec
v sat = µ n E c
v = µ ne E h
Eh


V gs – V hn
L
µn E h
Eh
1 +
Ec
18
Velocity – Mobility – Field Relationships
Carrier Velocity (µm/psec)
0.1
Normalized Carrier Mobility
1
0.09
0.9
Carrier Velocity
0.08
0.8
0.07
0.7
0.06
0.6
0.05
0.5
0.04
0.4
Normalized Mobility
0.03
0.3
0.02
0.2
0.01
0.1
0
0
0
5
10
15
20
25
30
35
40
45
50
Lateral Electric Field (V/µm)
18a
Mobility And Lateral Field
l
Mobility And Field


l
µ ne
Eh


µn
Eh
1 +
Ec
V gs – V hnc
L

=
µn
V gs – V hnc
1 +
L Ec
=
µn
V dss
1 +
L Ec
V dss
L
Electric Field Problems
Eh
 Crude Approximation For Horizontal Field,
 Free Carriers Exist Only Over Channel Where Voltage With
Vdss = Vgs – Vhnc
Respect To The Source Is At Most
 Channel Length, L, Should Be Effective Channel Length, L',
But This Shrinkage Is Already Accounted For By Channel Length
Modulation Voltage Parameter,
V
 L E c Is About 1.75 Volts For L = 0.35 µm
19
Volt–Ampere Impact Of High Lateral Field
l
Static Drain Current
K n = µ n C ox  K neff

= µ neff C ox
2

l
Kn
2
W
L
1 +
V ds – V dss
V
V gs – V hnc
1 +
L Ec
Very High Fields


l
Id =
(Vgs – V hnc )
Vgs – Vhnc
Id

>> L E c
W C ox v sat
2
V gs – V hnc
1 +
V ds – V dss
Vl
Comments
 Drain Current Scales Approximately With W, As Opposed
To W/L
 Drain Current Almost Linear W/R To Gate–Source Voltage
20
MOS Large Signal Model
D
Cold
id
c
rdd
Cgd
c
Static Drain Current
c
c
DBD
c
rdb
Id
G
c
C gd
 Gate-Drain Capacitance
C gs
 Gate-Source Capacitance
C db
 Drain-Bulk Capacitance
C sb
 Source-Bulk Capacitance
C old
 Drain Overlap Capacitance
Cdb
DBS
c
c
c
c
c
B
r ss
 Source Overlap Capacitance
 Drain Ohmic Resistance
 Source Ohmic Resistance
r bb
 Bulk Ohmic Resistance
 Bulk-Drain Diode
r sb
 Bulk-Source Diode
r db
 Bulk Spreading Resistance
 Bulk Spreading Resistance
rsb
Cgs
rss
c
rbb
Csb
Cols
C ols
r dd
S
DBD
DBS
21
Device Capacitances In Saturation
D
Cold
C gd + C old
id

C old
c
rdd
Cgd
c
C gs
c
c
DBD
c
rdb
C db
Id
G
= W L C ox
=
Cdb
DBS
c
c
c
c
c
rsb
Cgs
rss
c
B
rbb
C sb
1 –
 Large (Hundreds Of fF)
C sb
 Large (Hundreds Of fF)
 Moderate (High Tens Of fF)
C gd , C old , C ols
 Small (Tens Of fF)
V bd
Vj
V bs
Vj
C ols
= W L d C ox
Ad
 Drain-Bulk Junction Area
 Source-Bulk Junction Area
 Zero Bias Depletion
S
C db
Ld
L
As + W L C jo
Csb
Cols
C gs
=
+
Ad C jo
1 –
c
2
3
= W L d C ox
As
C jo
Capacitance Density
22
Approximate (Long Channel) Small Signal Model
C old
g mf
D
Cgd
Cdb
c
c
c
c
gmf vga
gmb vba
go
Cgs
Csb
c
c
c
vga
+

c

vba
c
b =
+
go
c
B

C ols
S

g mb
G

c
I d
V gs |
I d
V bs |

2K n
W
L
I dQ
Q
= b g mf
Q
V/ 2
2 V F – V T – V bsQ
I d
V ds |

Q
I dQ
V  + V ds – V dss
Assumptions
l




All Series Ohmic Resistances Are Negligible
Transistor Operates In Saturation Regime
"Long Channel" Approximation Invoked For Static Drain Current
Model To Be Used As A Precursor To Computer–Based Studies
23
Short Channel Small Signal Model
l Drain Current:
Id =
Kn
2
W
L
l Intermediate Parameters:
l Forward
Transconductance: g mfs
l Output Conductance:
2
1 +
V ds – V dss
V
V gs – V hnc
1 +
L Ec
V ds – V dss
V
f =
f
W
L
c
=
V dss
LEc
g mf =
2Kn
b =
V/ 2
2 V F – V T – V bsQ
= g mf
l Bulk Transconductance:
V gs – V hnc
1+f
1+f c
1–
I dQ
V dss / 2 V 
f 2
– c/
1+f 
1+f c
g mbs = b g mfs
go =
I dQ
V  + V ds – V dss
24
Hypothetical Device
l Physical Parameters
N A = 5 (10)
14
cm
N D = 5 (10)
20
cm
N iB = (10)
10
cm
l Device Parameters
–3
T ox = 50 Angstroms
–3
L = 0.35 µm
–3
Vhn = 0.65 volts
 s = 1.05 pF/cm
 ox = 345 fF/cm
µn = 400 cm 2 / volt-sec
E c = 4 volts / µm
T = 300 8K
W/ L = 5
l Circuit Parameters
Vds = 2 volts
Vgs = 1.2 volts
Vbs = –3 volts
25
Static Performance
l Peripheral Calculations
VF = 280.0 mV (Fermi Potential)
Vj = 917.4 mV (Junction Potential)
Vu = 176.4 µV (Body Effect Potential)
V hnc = 685.2 mV (Compensated Threshold) 
V hn = 35.2 mV
Vdss = 514.8 mV (Drain Saturation Voltage)
V = 669.7 mV (Channel Length Voltage)

L E c = 1.4 volts (Lateral Field Voltage)
K n = 276.0 µmho / volt
(Transconductance Parameter)
f = 2.218 (Channel Length Parameter)

f c = 0.368 (Lateral Field Parameter)
l
Static Drain Current
 I d = 182.9 µA (Long Channel Drain Current)
 I d = 430.2 µA (Short Channel Drain Current)
 Note Short Channel -To- Long Channel Ratio of 2.35; Ratio Is
Generally Between 1.5 And 3.0
26
Small Signal Parameters
l
Forward Transconductance
 gmf = 1.09 mmho (Ignoring Short Channel Effects)
 gmf = 1.25 mmho (Incorporating Short Channel Effects)
 Note Short Channel -To- Long Channel Ratio of 1.14; Ratio Is
Generally Between 0.5 And 2.0
l
Bulk Transconductance
(Bulk Parameter)
 b = 5.0 2 (10) –3
 gmb = 6.25 µmho (Incorporating Short Channel Effects)
 Note Bulk Transconductance Is About 200 Times Smaller
Than Forward Transconductance
l
Drain–Source Conductance
 go = 199.7 µmho (Incorporating Short Channel Effects)
 Corresponds To Shunt Output Resistance Of About 5 K
 Mandates Conductance Enhancement Strategies When
Designing High Performance Transconductors
27
Device Unity Gain Frequency
D
V
dd
Cgd + Cold
AC Short Circuit
c
c
I
bias
Cbig
g
c
mf
c
i in
l
l
i out
c
i out
i in
T
=

c
c
v
g
1
go
v
mb 2
i out
c
Cgs + Cols
i in
G+
v
1
 S 
v
2
+
B
g mf – s C gd + C old
s C gs + C ols + C gd + C old
C gs
g mf
+ C ols + C gd + C old

µ n V gs – V hn
3L d
2 2
L
+
3
L
l Comments
 Unity Gain Frequency Is Good Device Figure Of Merit;
Crude Circuit Performance Figure Of Merit
 Result Assumes  T C gd << gmf
28
Common Source Inverter
ML
c
VDD
R Leff
c
c
+
Vs
VGG
–
+
c
Vo
MD
R Leff
c
Vos
MD
CL
CL
c
+
Vs
c
–
–
Schematic Diagram
AC Schematic Diagram
29
Inverter Load Resistance Calculations
rddl
ML
c
c
c
+
Vx
–
g mbl vba
g mfl vga
Ix
+ vga –
c
c
rol
c
– vba +
rssl
rbbl
+
Vx
v ga
Vx =

R Leff
Vx
Ix
= v ba
r ssl + r ddl
= r ssl +
–
Ix
= – V x + r ssl I x
I x + r ol I x + g mfl v ga + g mbl v ba
1 +
r ddl + r ol
1 +  bl g mfl r ol

1
1 +  bl g mfl
30
Inverter Gain Calculations
R'
c
R Leff
c
c
rddd
Vos
MD
Vs
c
+ vga –
–
g mfd vga
Vs
V os
Vs
= –
1 +
R Leff
CL
c
c

c
– vba +
rssd
rbbd
–
gmfd R Leff
R Leff + r ddd + r ssd
1 + bd gmfd r ssd +
r od
Av
Ignore For
Low
Frequencies
rod
g mbd vba
+
Av =
Vos
c
c
CL
+
R out
–
1
1 +  bl

– gmfd R Leff

–
gmfd
1 + bl gmfl
Wd /L
Wl/L
31
Inverter Bandwidth Calculations
+
rddd
R'
Vx
–
Ix
c
g mfd vga
+ vga –
c
rod
g mbd vba
c
c
– vba +
rssd
B 3dB =
R

Vx
Ix
=
1
R Leff C L
R out C L
1
=
R
/
| R Leff C L
= r ddd + r ssd +

1 +  bl g mfl
CL

1
R Leff C L
1 + 1 +  bl g mfd r ssd r od
GBP

B 3dB
/
1
rbbd
A v B 3dB
=
g mfd
CL
32
Related documents