Download 0 - UniMAP Portal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EET 423
POWER ELECTRONICS -2
POWER ELECTRONICS 2
Prof R T Kennedy
1
SMPS OPERATION
QUANTIZED POWER/ENERGY TRANSFER
VOLTAGE REGULATION
POWER ELECTRONICS 2
Prof R T Kennedy
2
BASIC COMPONENTS
sw1
Ein
NON-ISOLATED
C
sw2
L
R
sw1
sw2
ISOLATED
SW1 controllable
Ein
T
C
L
R
BJT MOSFET IGBT
SW2 non-controllable (RECTIFIER pn or Schottky)
controllable (MOSFET)
POWER ELECTRONICS 2
Prof R T Kennedy
3
COMPONENT INTERCONNECTIONS
1
2
sw1
C
sw2
Ein
R
L
3
3
POWER ELECTRONICS 2
Prof R T Kennedy
4
SWITCHING CYCLE SUB INTERVALS
L
E in
C
R
a
E in
C
L
R
b
E in
L C
R
c
POWER ELECTRONICS 2
Prof R T Kennedy
5
BASIC TOPOLOGIES & CONSTRAINTS
SWITCH
sw1
12
L
Ein
13
C
R
sw2
sw2
L
E in
sw1
C
R
23
PROBLEM
L
L
L
inrush current
short circuit source
output capacitor
voltage discharge
Sw1
Sw2
ON
OFF
J
OFF
ON
J
OFF
ON
OFF
ON
J
L
YES
YES
YES
NO
N
POWER ELECTRONICS 2
Prof R T Kennedy
6
BASIC-1 BUCK CONVERTER
Ei n
L
sw1
C
sw2
R
Ei n
sw1
on
L
C
R
a
L
Ei n
c
L C
R
Ei n
sw2
on
C
R Vout
POWER ELECTRONICS 2
Prof R T Kennedy
7
BASIC-2 BOOST CONVERTER
sw2
L
L
C
E in
E in
sw1
sw1
on
R
sw2
on
R
b
L
L
E in
E in
C
C
R
C
R
a
POWER ELECTRONICS 2
Prof R T Kennedy
8
BUCK TOPOLOGY TERMINOLOGY
• Step Down Converter
output voltage  input voltage
• Direct Converter
direct energy transfer from input to output (sw1 on)
• Forward Converter
energy transferred forward supply  load (sw1 on)
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
POWER ELECTRONICS 2
Prof R T Kennedy
9
BUCK TOPOLOGY TERMINOLOGY
• Step Down Converter
output voltage  input voltage
• Direct Converter
direct energy transfer from input to output (sw1 on)
• Forward Converter
energy transferred forward supply  load (sw1 on)
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
POWER ELECTRONICS 2
Prof R T Kennedy
10
BOOST TOPOLOGY TERMINOLOGY
• Step Up Converter
output voltage  input voltage
• Indirect Converter
no direct energy transfer from input to output
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
POWER ELECTRONICS 2
Prof R T Kennedy
11
BOOST TOPOLOGY TERMINOLOGY
• Step Up Converter
output voltage  input voltage
• Indirect Converter
no direct energy transfer from input to output
• Single Ended Converter
common input-output rail
• Non-Isolated Converter
no transformer input – output isolation
POWER ELECTRONICS 2
Prof R T Kennedy
12
BUCK-BOOST COMBINED CONVERTER
L
E in
L
E in
C
R
C
R
POWER ELECTRONICS 2
Prof R T Kennedy
13
BUCK-BOOST COMBINED CONVERTER
L
E in
L
E in
C
R
C
R
POWER ELECTRONICS 2
Prof R T Kennedy
14
BUCK-BOOST COMBINED CONVERTER
L
L
E in
C
R
SWITCH
SYNCHRONISATION
POWER ELECTRONICS 2
Prof R T Kennedy
15
BUCK-BOOST COMBINED CONVERTER
L
Ein
sw1
on
C
R
b
L
Ein
C
sw2
on
R
c
POWER ELECTRONICS 2
Prof R T Kennedy
16
BUCK-BOOST COMBINED CONVERTER
Ein
C
L
R Vout
NOTE
VOLTAGE INVERSION
POWER ELECTRONICS 2
Prof R T Kennedy
17
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
E in
C1
R
C2
R
POWER ELECTRONICS 2
Prof R T Kennedy
18
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
E in
C1
R
C2
R
POWER ELECTRONICS 2
Prof R T Kennedy
19
BOOST-BUCK COMBINED CONVERTER
L2
L1
E in
C2
C1
SWITCH
R
SYNCHRONISATION
POWER ELECTRONICS 2
Prof R T Kennedy
20
BOOST-BUCK COMBINED CONVERTER
L1
Ein
L2
C1
C2
R Vout
NOTE
VOLTAGE INVERSION
POWER ELECTRONICS 2
Prof R T Kennedy
21
SMPS
TOPOLOGIES
POWER SUPPLIES
SWITCHING
LINEAR
HARD
SERIES SHUNT SWITCHED MODE
SMPS
SOFT
RESONANT
RPS
HYBRID
QRPS
2 BASIC TOPOLOGIES
BOOST
BUCK
BUCK DERIVED
BOOST DERIVED
COMBINED
SEPIC
FORWARD
PUSH PULL
1 or 2 Transistor
BUCK-BOOST
BUCK-BOOST DERIVED BOOST –BUCK DERIVED
BRIDGE
FLYBACK
HALF
BOOST -BUCK
FULL
CUK
1 or 2 Transistor
POWER ELECTRONICS 2
Prof R T Kennedy
22
SMPS
TOPOLOGIES
POWER ELECTRONICS 2
Prof R T Kennedy
23
RECAP SMPS APPLICATIONS
POWER ELECTRONICS 2
Prof R T Kennedy
24
INDUCTOR CURRENT MODES
Imax
Iind
1
2
o
Imin
2
1
CCM
t
Imax
Iind
I
I av  max
2
0
t
BOUNDARY
Imax
Iind
DCM
o
1
2
1
3
t
Prof R T Kennedy
2
3
Imi
n
POWER ELECTRONICS 2
25
BUCK CONVERTER CIRCUIT CURRENTS
Ii n
Ids a IL
Ifwd
IL b Iout
L
IC
Ids
Ei n
Ifwd
C
R Vout
POWER ELECTRONICS 2
Prof R T Kennedy
26
Vgs
BUCK CONVERTER
CIRCUIT CURRENTS
CCM
0
Iout
0
IC
0
IC,av= 0
0
IL
0
IL,av=Iout
0
Ids,av 0
Ids
Iin,av
Iout
IL=Ids+Ifwd
0
0
Ifwd
0
IL=Iout+IC
0
Iout
Ifwd,av
POWER ELECTRONICS 2
Prof R T Kennedy
27
Vgs
BUCK CONVERTER
CIRCUIT CURRENTS
CCM
0
Iout
0
IC
0
IC,av= 0
0
IL
0
IL,av=Iout
0
Ids,av 0
Ids
Iin,av
Iout
IL=Ids+Ifwd
0
0
Ifwd
0
IL=Iout+IC
0
Iout
Ifwd,av
POWER ELECTRONICS 2
Prof R T Kennedy
28
Vgs
Iout
IC
BUCK CONVERTER
CIRCUIT CURRENTS
DCM
0
0
IC,av= 0
0
IL=Iout+IC
IL,av=Iout
IL
0
Ids
Ids,av
Iin,av
0
IL=Ids+Ifwd
Ifwd
Ifwd,av
0
POWER ELECTRONICS 2
Prof R T Kennedy
29
BOOST CONVERTER CIRCUIT CURRENTS
Iin
IL
L
b Iout
IC
Ids
Ei n
Ifwd
a Ifwd
Ids
Ifwd
C
R
Vout
POWER ELECTRONICS 2
Prof R T Kennedy
30
Vg
0
Isout
0
IC
BOOST CONVERTER
CIRCUIT CURRENTS
CCM
IC,av= 0
0
Ifwd=Iout+ IC
IL,av=Iin,av
Ifwd
0
Ifwd,av
Ids,av
Id
s
Iout
IL,av
IL=Ids+ Ifwd
0
IL,av
IL
0
POWER ELECTRONICS 2
Prof R T Kennedy
31
Vg
0
Isout
0
IC
0
Ifwd
BOOST CONVERTER
CIRCUIT CURRENTS
DCM
IC,av= 0
Ifwd=Iout+ IC
Ifwd,av = Iout
0
Id
s
Ids,av
IL=Ids+ Ifwd
0
IL,av = Iin,av
IL
0
Prof R T Kennedy
POWER ELECTRONICS 2
32
WAVEFORM FORMULAE
C
DC- average
0
DC
( 1 - D) T
DT
AC- rms
total- rms
D(1  D)  C
D C
B
C
kC
A B
D
2
A
DC
0
DT
k
2( B  A)
B A
D 2
 D( A  B) 
( A  AB  B 2 )  

3
2


k2
D(1 
)  D2 C
12
2
D 2
( A  AB  B 2 )
3
k2
D(1 
) C
12
(1 - D) T
C
A B
2
y
0
0
y
Y
3

Y
y
12
3

Y
12
POWER ELECTRONICS 2
Prof R T Kennedy
33
WAVEFORM FORMULAE
DC- average
C
D
C
2
AC- rms
D D2

C
3
4
total- rms
D D2

C
3
4
0
D T (1-D) T
POWER ELECTRONICS 2
Prof R T Kennedy
34
TRAPEZOIDAL-SQUAREWAVE
RMS COMPARISON
B
kC
4
 1.155
3
C
A
0
D T (1 - D) T
rms, trap
rms, sq
rms, trap
k2
 1
rms, sq
12
1
2( B  A)
k
B A
C
A B
2
0
2
k
square wave
POWER ELECTRONICS 2
Prof R T Kennedy
1
CCM-DCM boundary
peak  peak ripple
k
2
pulse average
35
PARASITICS
PARASITIC EFFECTS
LOSSY
RESISTIVE
SOURCE
RS
INDUCTOR
rL
MAGNETICS
core loss
winding loss
CAPACITOR
esr
LOSSLESS
CAPACITOR
esl
SEMICONDUCTORS
RECTIFIER
VF
I rev rec
INDUCTOR
TRANSFORMER
leakage L
stray capacitance
TRANSISTOR
ON Loss
SWITCHING loss
BJT /IGBT
ce
BJTV/IGBT
MOSFET
rds,on
MOSFET
Vce
rds,on
turn on
turn on
turn off
turn off
POWER ELECTRONICS 2
Prof R T Kennedy
36
POWER and POWER LOSSES
MOSFET
IM
0

Pmos ,loss
 I M 2  Dmos  rds,on
DmosT
T
IGBT
IM
0
DigbtT
T
BJT
IM
0
I rms 2  rds,on
Pmos ,loss
Pigbt,loss

I av  Vce,on
Pigbt,loss
 I M  Digbt  Vce,on
PBJT ,loss

I av  Vce( sat )
PBJT ,loss
 I M  Dbjt  Vce( sat )
DbjtT
T
POWER ELECTRONICS 2
Prof R T Kennedy
37
POWER and POWER LOSSES
RECTIFIER
IM
0
Prect , loss

Prect , loss
 I M  Drect  V F
DrectT
T
RESISTOR
IM
I av  V F
I rms 2  R
PR, loss

PR, loss
 IM 2  D  R
0
R
DT
T
POWER ELECTRONICS 2
Prof R T Kennedy
38
SYSTEM POWERS and EFFICIENCY
v(t )  i (t )
p (t ) 
Pav
1 T
v(t ) i (t ) dt

T 0

T
T
Pav

0 v(t ) dt  0 i(t ) dt
T
T
Pav

voltage area current area

period
period
Pav

Vav  I av
POWER ELECTRONICS 2
Prof R T Kennedy
39
SYSTEM POWERS and EFFICIENCY
efficiency 
Pout, av
Pin, av

efficiency 
Pin, av  Ploss
Pin, av

Pout, av
Pout, av  Ploss
Vout  I out
Ein  I in, av
POWER ELECTRONICS 2
Prof R T Kennedy
40
VOLTAGE TRANSFER FUNCTION ANALYSIS
• ENERGY BALANCE
• POWER BALANCE
• VOLT-TIME INTEGRAL
POWER ELECTRONICS 2
Prof R T Kennedy
41
FARADAY’S VOLT-TIME INTEGRAL
IM
INDUCTOR CURRENT
Im
current start and finish at same value
0
t
V1
INDUCTOR VOLTAGE
0
t1
t
V2
t2
VL, av

1 T  di 
L
dt
T 0  dt 
VL, av

1 T
L di
T 0
VL, av

L T
I 
T 0
VL, av

L
I 0  IT   0
T
T
EQUAL AREAS
T
0 v(t ) dt
V1  t1
0
 V2  t2
POWER ELECTRONICS 2
Prof R T Kennedy
42
BUCK and BOOST CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
5
BOOST
4.5
Vout
1

1
Ein 1  Dsw1
4
3.5
Vout
Ein
3
2.5
2
1.5
BUCK
1
Vout
 Dsw1  1
Ein
0.5
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Dsw1
Prof R T Kennedy
1
POWER ELECTRONICS 2
43
BUCK-BOOST BOOST- BUCK
CONVERTERS
VOLTAGE TRANSFER FUNCTIONS
1
INVERTED
STEP DOWN (<1)
0
1
2
3
4
Vout
Ein 5
INVERTED
STEP UP (>1)
6
7
8
9
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
Dsw1
POWER ELECTRONICS 2
Prof R T Kennedy
44
PRACTICAL SYSTEMS

Vout
Ein

Vout  I out
Ein  I in, av

 I in, av 

 
 I 
Vout
Vout

 efficiency
Ein practical
Ein ideal
POWER ELECTRONICS 2
Prof R T Kennedy
45