Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Corso dottorato di Statistical Inference docente Daniela ICHIM (ISTAT) libro di testo: Probability and Statistics Jeffrey Rosenthal and Michael Evans vedi http://www.amazon.com/Probability-Statistics-The-ScienceUncertainty/dp/1429224622 Programma del corso basato sul testo "Probability and Statistics" di J. Rosenthal e M. Evans, Palgrave - Mc Millan LEZIONE 1 4 Sampling Distributions and Limits 4.1 Sampling Distributions 4.5 Monte Carlo Approximations LEZIONE 2 4.6 Normal Distribution Theory 4.6.1 The Chi-Squared Distribution 4.6.2 The t Distribution 4.6.3 The F Distribution 199 200 224 234 236 239 240 LEZIONE 3 5 Statistical Inference 5.1 Why Do We Need Statistics? 5.2 Inference Using a Probability Model 5.3 Statistical Models 5.4 Data Collection 5.4.1 Finite Populations 5.4.2 Simple Random Sampling 5.4.3 Histograms 5.4.4 Survey Sampling 253 254 258 262 269 270 271 274 276 LEZIONE 4 5.5 Some Basic Inferences 5.5.1 Descriptive Statistics 5.5.2 Plotting Data 5.5.3 Types of Inferences 282 282 287 289 LEZIONE 5 6 Likelihood Inference 6.1 The Likelihood Function 6.1.1 Sufficient Statistics 6.2 Maximum Likelihood Estimation 297 297 302 LEZIONE 6 6.2.1 Computation of the MLE 310 6.2.2 The Multidimensional Case (Advanced) 316 6.3 Inferences Based on the MLE 320 6.3.1 Standard Errors, Bias, and Consistency 308 321 LEZIONE 7 6.3.2 Confidence Intervals 6.3.3 Testing Hypotheses and P-Values 6.3.4 Inferences for the Variance 326 332 338 LEZIONE 8 6.3.5 Sample-Size Calculations: Confidence Intervals 6.3.6 Sample-Size Calculations: Power 6.4 Distribution-Free Methods 6.4.1 Method of Moments 6.4.2 Bootstrapping 6.4.3 The Sign Statistic and Inferences about Quantiles 6.5 Asymptotics for the MLE (Advanced) LEZIONE 9 8 Optimal Inferences 8.1 Optimal Unbiased Estimation 8.1.1 The Rao-Blackwell Theorem and Rao-Blackwellization 8.1.2 Completeness and the Lehmann-Scheff Theorem 438 8.1.3 The Crame-Rao Inequality (Advanced) LEZIONE 10 8.2 Optimal Hypothesis Testing 8.2.1 The Power Function of a Test 8.2.2 Type I and Type II Errors 8.2.3 Rejection Regions and Test Functions 8.2.4 The Neyman-Pearson Theorem 8.2.5 Likelihood Ratio Tests (Advanced) 446 446 447 448 449 455 LEZIONE 11 9 Model Checking 479 9.1 Checking the Sampling Model 9.1.1 Residual and Probability Plots 9.1.2 The Chi-Squared Goodness of Fit Test 9.1.3 Prediction and Cross-Validation 9.1.4 What Do We Do When a Model Fails? 9.2 Checking for Prior-Data Conflict 9.3 The Problem with Multiple Checks 479 486 490 495 496 502 509 340 341 349 349 351 357 364 433 434 435 440