* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download sfh2030
Audio power wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Index of electronics articles wikipedia , lookup
Oscilloscope history wikipedia , lookup
Josephson voltage standard wikipedia , lookup
Regenerative circuit wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Wien bridge oscillator wikipedia , lookup
Integrating ADC wikipedia , lookup
Radio transmitter design wikipedia , lookup
Transistor–transistor logic wikipedia , lookup
Surge protector wikipedia , lookup
Power MOSFET wikipedia , lookup
Current source wikipedia , lookup
Negative-feedback amplifier wikipedia , lookup
Two-port network wikipedia , lookup
Wilson current mirror wikipedia , lookup
Power electronics wikipedia , lookup
Voltage regulator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Valve audio amplifier technical specification wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Operational amplifier wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Current mirror wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Module e EEE E536J2 2: Con ntrol & Auttomattion Mode eling and a siimula ation of o sen nsors and circuits c R R. Grossm mann Amp plifiers Senssors ems Syste LTsp pice EEE536JJ2: Contrrol & Auto omation Tab ble of con ntents: als of this courrse .........................................................................................................................................................3 Goa Intro oduction to LT Tspice ....................................................................................................................................................4 0.2.1 Installatio on ..........................................................................................................................................................4 0.2.2 Schemattic Capture .............................................................................................................................................5 0.2.3 Analysess .............................................................................................................................................................8 0.2.4 Waveform m Viewer ...............................................................................................................................................9 1 Amplifier circuits .................................................................................................................................................................... 10 1.1 Idea al op amp ..................................................................................................................................................................10 1.1.1 eristic ...................................................................................................................................................10 Characte Compara ator ......................................................................................................................................................10 1.1.2 Schmitt-T Trigger .................................................................................................................................................11 1.1.3 plifiers ...................................................................................................................................................12 1.2 Clossed-loop amp 1.2.1 Negative e feedback ............................................................................................................................................12 Non-inve erting amplifierr / voltage follo ower .........................................................................................................13 1.2.2 1.2.3 Inverting amplifier .............................................................................................................................................13 1.2.4 Differencce amplifier...........................................................................................................................................14 1.2.5 Instrume entation ampliffier ..................................................................................................................................14 Simple model m ....................................................................................................................................................15 1.2.6 1.3 Rea al op amps ................................................................................................................................................................16 1.3.1 oltage and currents ..............................................................................................................................16 Offset vo 1.3.2 Non-linea ar and limited output ............................................................................................................................18 1.3.3 Input/outtput impedanc ce ....................................................................................................................................19 1.3.4 Limited bandwidth b ............................................................................................................................................21 1.4 Actiive filters ...................................................................................................................................................................22 Filter syn 1.4.1 nthesis .................................................................................................................................................22 Controlle er ..........................................................................................................................................................24 1.4.2 2 Sensors ..................................................................................................................................................................... 25 2.1 Classsification .................................................................................................................................................................25 2.2 Mod deling sensor circuits ................................................................................................................................................25 2.2.1 D model .............................................................................................................................................25 Simple DC 2.2.2 Controllin ng physical qu uantities ..........................................................................................................................26 2.2.3 Dynamicc behaviour ...........................................................................................................................................27 2.3 Volttage sources .............................................................................................................................................................29 2.3.1 Lambda probe ..................................................................................................................................................29 2.3.2 Thermo couples c ................................................................................................................................................30 2.4 Currrent sources .............................................................................................................................................................32 Photo dio 2.4.1 ode ......................................................................................................................................................32 Photo tra ansistor ................................................................................................................................................35 2.4.2 Current sources s in LTs spice...............................................................................................................................36 2.4.3 2.5 Ressistors .......................................................................................................................................................................37 NTC ..................................................................................................................................................................37 2.5.1 Gas senssor .......................................................................................................................................................38 2.5.2 2.5.3 Strain ga auges ...................................................................................................................................................39 Evaluatio on of resistanc ce ...................................................................................................................................40 2.5.4 Wheatsto one bridge ...........................................................................................................................................40 2.5.5 Bridge with w difference amplifier ........................................................................................................................40 2.5.6 LTspice simulations s off resistive senssors .........................................................................................................41 2.5.7 Non-linea ar resistors ..........................................................................................................................................43 2.5.8 2.6 Osccillators ......................................................................................................................................................................45 LC oscilla 2.6.1 ator ......................................................................................................................................................45 RC oscilllator .....................................................................................................................................................45 2.6.2 2.6.3 Timer IC 555 .....................................................................................................................................................46 3 Sensor syystems ..................................................................................................................................................................... 49 3.1 Indu uctive proximity switch ..............................................................................................................................................49 3.2 Com mplex Systems..........................................................................................................................................................52 Amplifierr circuits ...............................................................................................................................................52 3.2.1 Modulato or .........................................................................................................................................................53 3.2.2 3.2.3 VCO (voltage-controlle ed oscillator) ...................................................................................................................53 0.1 0.2 Appendix: A Data ssheets Op am mp LM741, Natio onal Semicondu uctor Op am mp AD8541, Ana alog Devices NTC M MF58, Cantherm m NTC T Thermistor, Vish hay Gas se ensor TGS822, Figaro Photo diode SFH203, Infineon Prof. P Dr.-Ing. Gro oßmann V V3.0 2 EEE536JJ2: Contrrol & Auto omation 0.1 0 Goa als of this cours se • Ana alyze and d understa and op am mp circuiits useful for senso ors • Lea arn about limitation ns of real op amps s • Sim mulate com mponents s and sysstems in PSPICE P • Und derstand important physica al propertties of sen nsors • Ana alyze data a sheets and extra act neces ssary properties • Builld useful models of o sensorss and com mponents s • Be w wary of simulators s s example: e real resisstor: a lott of physiics • • • • • well equa ations Maxw intern nal electrric field curre ent densitty elect ro-magne etic fields s verload, … non-llinearity, noise, ov id deal resisstor (simp ple mode el): : advanced a d model: C R Prof. P Dr.-Ing. Gro oßmann L V V3.0 3 EEE536JJ2: Contrrol & Auto omation 0.2 0 Intro oductio on to LTspice 0.2.1 0 Insttallation • Downlo oad LTspi ice.zip; extract LT TspiceIV.exe and folders lib b und pro ojects • Execute LTspiceIV.exe • Use acccessible in nstallation folder, NO OT “progr ram files s (x86)“ or system folders NO! OK! You Y should d find the symbol s LTs spice IV V on o your de esktop. • In the installation folder rep place old fo older lib with w new (d downloadeed and extrracted) lib b. It conta ains European symbo ols and add ditional mo odels. • Move the downloaded folde er projec ts into the e installatio on folder Prof. P Dr.-Ing. Gro oßmann V V3.0 4 EEE536J2: Control & Automation 0.2.2 Schematic Capture open new schematic wire ground other components (library) components R, C, L, diode simulate always define ground! Short-cuts: F5 delete (!) Ctrl-R rotate F7 move (w/o wires) Ctrl-E mirror F8 drag (with wires) Ctrl-G toggle grid Values: femto modifier f, F pico p, P nano n, N micro µ, u, U milli m, M kilo k, K Mega meg, MEG Giga g, G Tera t, T Units: arbitrary units allowed after number/modifier (without space!) Examples: 1.2k = 1200; error: 1.2 Prof. Dr.-Ing. Großmann k; 5 R=1megohm; C=1f = 1femtoFarad (!) V V3.0 5 EEE536JJ2: Contrrol & Auto omation Sources: S • sourcess of volta age and cu urrent are e located in n the librarry • change e behavior of source: click rig ght mouse button and d choose e Advance ed: • for PU ULSE sourrces with Trise = 0 a and Tfall l = 0, LTsp pice insertss values > 0! if you need recta angular pu ulses, defin ne very small values for Trise and Tfal ll Prof. P Dr.-Ing. Gro oßmann V V3.0 6 EEE536JJ2: Contrrol & Auto omation Labels: L • Add d labels to o nodes/wirres for eas sier accesss in WaveformViewer SPICE S dire ectives in nsert comm mand liness and comm ments into the netlist: • • • parame eter definitions special analyses define models Prof. P Dr.-Ing. Gro oßmann V V3.0 7 EEE536JJ2: Contrrol & Auto omation 0.2.3 0 Ana alyses .OP: . calcu ulate opera ating point (constant voltages & currents)) afterr .OP simu ulation, poin nt at a nod de or current and view w OP valuee in status bar analyses a th hat produce e output fo or WaveforrmViewer: Transient T AC analyysis DC sw weep simulate s tim me intervall sweep frrequencies s for all select s time resolution n with w “step cceiling” sources sweepp source (v voltage/ currennt) DC ch aracteristic cs only! also neested sweeps Prof. P Dr.-Ing. Gro oßmann V V3.0 8 EEE536JJ2: Contrrol & Auto omation 0.2.4 0 Wav veform Viewer V Plot P voltage es, currentts and calc culated qua antities. Prrobe in Sch hematicCappture: • • • click (le eft) at a wirre to inspect its volta age (cursor = measuring tip) click an nd drag to plot a volttage differrence click on n a pin or ALT-click A on o a wire to o see curre ent (cursor = currentt clamp) Or O choose Add Trac ce from Waveform W V Viewer men nu Plot Se ettings ((shortcut CTRL-A) C an nd enter e an exxpression; e.g. “I(R1 1) * ( V (in) – V(n002) V )” yields power in R1. R See S Help topics → Waveform Arit thmetics for availa able functioons. Change C ax xis properrties (plotte ed quantityy, limits, tic cks, linear/llogarithmicc): Click C left on n axis (curssor = ruler) Other O featu ures: • • cursor ((single and d differentia al): click on n trace nam me FFT: me enu View → FFT Prof. P Dr.-Ing. Gro oßmann V V3.0 9 EEE536JJ2: Contrrol & Auto omation 1 Amplifier circuits 1.1 1 Idea al op am mp 1.1.1 1 Cha aracteris stic operation o al amplifiier: U+ U+ Uout Δ in ΔU -10µV U- • • • • • Uout 10µV V ΔU Uin U- voltage e amplifie er extrem mely high gain (105 … 108) no inpu ut current unlimitted outpu ut current limited output voltage v characterisstic for ga ain g = 10 06 Δ 1.1.2 1 Com mparatorr very v smalll linear in nput rang ge, mostlyy → approxximately just 2 output state es U+/- (su upply) Uin U+ Uref Uin t Uout U- check c if Uin > Uref U+ Uout t U- disadvan d ntage: noisy n sign nals lead to “bounc cing” Prof. P Dr.-Ing. Gro oßmann V V3.0 10 EEE536JJ2: Contrrol & Auto omation 1.1.3 1 Sch hmitt-Trig gger in nverting ccomparator with 2 differentt thresholds, deriv ved from the 2 outtput state es: U+ Uout Uin U- U+ Uout Uin R1 R2 U1 Uref U2 U- Uref ⋅ ⋅ Uin U2 U1 U+ t Uout Uout = U+ when Uin < U1 Uout = U- when Uin > U2 t U- Prof. P Dr.-Ing. Gro oßmann V V3.0 11 EEE536JJ2: Contrrol & Auto omation 1.2 1 Clos sed-loop ampliifiers 1.2.1 1 Neg gative fee edback ⋅ x + e y g ⋅ 1 1 gR fo or 1 → ∞: ∞ ⋅ ⋅ ⋅ ⋅ ⋅ ; ⋅ ⋅ 1 1 ⋅ → 0 1 op o amp w with negattive feedb back: virtual shortcutt: Uin+ = UinUin Uout o 0V Iout R1 R2 only o nega ative feed dback yields stable e output: Prof. P Dr.-Ing. Gro oßmann V V3.0 12 EEE536JJ2: Contrrol & Auto omation 1.2.2 1 Non n-invertin ng ampliifier / volltage folllower Uin Uouut R1 R2 Uin age follow wer: volta Uouut 1.2.3 1 Inve erting am mplifier R Iin Uout R R1 Uout Uin U1 U2 U3 R1 R R2 Uout adde r: ⋅ R3 Prof. P Dr.-Ing. Gro oßmann V V3.0 13 EEE536JJ2: Contrrol & Auto omation 1.2.4 1 Diffference amplifier a r combines c s inverting g & non-inverting a amplifiers s R1 R UinUout Uin+ ⋅ R R1 1.2.5 1 Insttrumenta ation amplifier Data asheet Texa as Instrumentts INA118 8: Δ 1 50 Ω 25kΩ Ω RG 25kΩ Ω Prof. P Dr.-Ing. Gro oßmann V V3.0 14 EEE536JJ2: Contrrol & Auto omation 1.2.6 1 Sim mple mod del most m simu ulation prrograms provide p a “gain blo ock” and a “limiterr”: LTspice L providess a voltage-controllled voltage source (compo onent E): It include es a diffe erential input and a gain. If gain iss a numbe er, the ou utput is u nlimited. You Y may enter the e gain as a table w with pairs of values s (Uin, Uoout): With two pairss you get a linear amplifier with limited output. Tutorial T 1 1: open--loop cha aracteristiic of ideal op amp Resource R e: 126 6_opamp_char.assc Circuit C de escription: s volttage sourrce, E_ta able, load resistor 1kΩ, grou und Jobs: J DC C sweep of o voltage e source; inspect output o vo oltage Prof. P Dr.-Ing. Gro oßmann V V3.0 15 EEE536JJ2: Contrrol & Auto omation 1.3 1 Real op am mps 1.3.1 1 Offs set volta age and currents c U+ • characcteristic doesn’t pa ass thru 0 (Uout = 0 for Uin = UOS ≈ µV…mV)) Uout UOS • due to operating point off input tra ana In arre sistorss input currents Ip and not 0 ΔUin U- U+ Ip : Uout Δ in ΔU (average) bias current (pA … nA A) : offset current c ((≈ 0) In U- 1.3.1.1 1 O Offset mo odel • op amp a ampllifies offset voltage just like a signal • bias currentss only pro oblematic if the ey producce an inp put voltage (passing g thru a resistor) Datashee D ets: uA74 41, AD8541: dete ermine offfset volta age/curre ent Prof. P Dr.-Ing. Gro oßmann V V3.0 16 EEE536JJ2: Contrrol & Auto omation 1.3.1.2 1 O Offset com mpensattion non-inver n rting op amp: Ip UOS Δ Rsrc 1 ⋅ ⋅ ‖ ⋅ R1 Usrc In R2 ffor Ip ≈ In compens sation of bias currrents if ‖ in nverting o op amp: R Rfb In Δ Usrc Ip UOS 1 ⋅ ⋅ d to ground → ine effective Ip shorted compens sation of bias b curre ents with a resisto or ‖ betwe een “+” in nput and ground offset o volttage com mpensatio on: UOS U0+ U0- OS1 Rfb f add a negative offse et Prof. P Dr.-Ing. Gro oßmann OS1 U0- u use offsett compensation pin ailable) ns (if ava V V3.0 17 EEE536JJ2: Contrrol & Auto omation 1.3.2 1 Non n-linear and a limitted outpu ut limite ed outpu ut Op O amp iss no pow wer plant! output o is limited to supply volta age range, in n most ca ases even less: 0.5 … 1 U+ 0.5 … 1 Δ in ΔU (“output vvoltage sw wing”) Uos Only O for “rail-to-ra ail” amps Uout rea aches U±. Non-linea N ar charactteristic is no probl em for fe eedback as a lo ong as Uout is sufficiently la arge ( U- non nlinear . Simulatio S on: parameters of op amp p uA741 Resource R e: 132 2_741_op p.asc, 13 32_741_c char.asc, 132_741 1_uu.asc, 132 2_ua741_ _offset.assc Circuit C de escription: s op amp “ua7 741” (“-“ input gro ounded); mmetric supply s “VD DCSYM” (2 x 5V) sym sou urce volta age DC=0 0 to “+” in nput; loa ad resisto or 1kΩ Jobs: J • s simulate operating o g point; de etermine bias currrents c check all currents: c how goo od is the model? m • s sweep DC C source from -100 µV to +100 + µV, step 1 µV V d determine e voltage offset (in nput & output), outtput swing, linearity, gain g • b build non--inverting g amplifier with AV = 10 (R1 1 = 9 kΩ, R2 = 1 kΩ) k s sweep -1 V to +1 V (step 1m mV) c check outtput volta ge offsett, linearity y • a add sourc ce voltage e resistorr 100 kΩ, sweep a again o output volltage offsset? c compensa ation how w? Prof. P Dr.-Ing. Gro oßmann V V3.0 18 EEE536JJ2: Contrrol & Auto omation 1.3.3 1 Inpu ut/outpu ut impeda ance Iout Rout Rsrc s Zin Uin Uout U0 Usrrc Rlooad input impedance e: ou utput res istance: • sourrce is load ded • volta age divide er with so ource res istance → Uin ≠ Usrc • inputt capacita ance dec creases b bandwidth h • voltage e divider with w load • decrea ases outp put Uout (→ Uoout ≠ U0) ⋅ determine d e Rout from m loop eq quation: → op o amp w with negattive feedb back: • • Uin virtual shortcutt between n inputs: d C) inefffective input impedancce (R and virtual input impedance increase ed: I~ 0 ~0 ~ Uoutt R1 RL ⋅ • Iout virtual output im mpedanc ce decrea ased R2 ⋅ Prof. P Dr.-Ing. Gro oßmann V V3.0 19 EEE536JJ2: Contrrol & Auto omation Simulatio S on: redu uction of output o re sistance Resource R e: 133 3_ua741_ _Rout.ascc Circuit C de escription: s non n-inverting voltage e amplifie er, AV = 10 1 (reu use 132_ _741_uu.a asc) load d resistorr, enter “{{R}” as va alue add d SPICE directive “.step pa aram R lis st 100 1kk 100” Jobs: J • sim mulate op perating point (inc cludes ste epping off parametter R): display hint: in Wa aveformV Viewer D( D ) is the e derivativve of a qu uantity) (h • ch hange AV → ∞, de etermine original Prof. P Dr.-Ing. Gro oßmann V V3.0 20 EEE536JJ2: Contrrol & Auto omation 1.3.4 1 Lim mited ban ndwidth 1.3.4.1 1 D Dynamic gain open-loop o p gain g of o op amp p is frequ uency-dep pendent: 1 ⋅ /2 exercise: e : determin ne corner frequen ncy of o uA741 . 1.3.4.2 1 C Constant bandwid dth-gain (BWG) for effecttive feedb condition c back: corner c fre equency g0=10 10 depends d on cons stant abo ove 0 : AV(f) 5 10 of → 4 3 100 10 0 ⋅ 1 1 10 10 00 1k 10k ⋅ f/Hz Simulatio S on: band dwidth off op amp AD8541 Resource R e: 134 4_AD8541_bwg.a sc Circuit C de escription: s non n-inverting voltage e amplifie er with AD D8541 (po ower supp ply +5V a and AGND D) input voltage e: AC = 0 0.01 V an nd DC = 0.01 0 V Jobs: J rep peat for ga ain = 5 | 2 20 | 100 (dimensio on feedba ack resistors): • simula ate AC sw weep for f = 10 Hz z .. 10 MH Hz (“10m meg”) • view output o volltage, dettermine bandwidth b h(3 dB de ecay) Prof. P Dr.-Ing. Gro oßmann V V3.0 21 EEE536JJ2: Contrrol & Auto omation 1.4 1 Actiive filterrs 1.4.1 1 Filte er synthesis Op O amps increase e gain and d/or deco ouple stag ges: U1 R1 Uinn R2 U 1 C2 C1 R1 Uin U2 C1 U2 RA R2 C2 RB Add A Bode e diagram ms of decoupled sttages: 1 1 1 0.1 0 0.1 0.1 1 0 0.01 0..01 0.01 1 0.1 1 10 10 00 0.1 1 10 10 00 0 0.1 0 0 0 -45° -4 45° -45° -90° -9 90° -90° 0.1 1 00 10 10 Prof. P Dr.-Ing. Gro oßmann 0.1 1 00 10 10 V V3.0 -180° 0 0.1 1 10 100 1 10 100 22 EEE536JJ2: Contrrol & Auto omation C2 Sallen-Ke S ey low pass nd (2 orderr): Uin R1 ⋅ / Uout R3 C1 / ⋅ R2 ⋅ ⋅ ⋅ R4 Simulatio S on: Activve filter Resource R e: 141 1_actfilterr.asc Circuit C de escription: s build RC hig gh pass ( R1 = 3.3k kΩ, C1 = 4.7 µF) d voltage follower with uA7 741and ±5 5V suppliies add add d RC low pass (R2 2 = 3.3kΩ Ω, C2 = 47 nF) + vvoltage fo ollower input ac volttage sourrce 1V Jobs: J sim mulate AC C sweep for f = 1 Hz .. 10 kHz view w output voltage com mpare 3 dB-decay d ys with tim me consta ants Prof. P Dr.-Ing. Gro oßmann V V3.0 , 23 EEE536JJ2: Contrrol & Auto omation 1.4.2 1 Con ntroller In controller theoryy, a PID controller c r consists s of a proportional , an integ gral and a derivate d p path: source: s Wikip pedia im mplemen ntation with op am mps: RP R1 R2 CI RI R3 R2 R2 RD CD Prof. P Dr.-Ing. Gro oßmann V V3.0 24 EEE536JJ2: Contrrol & Auto omation 2 Sen nsors 2.1 2 Clas ssificatiion sensor: s transform ms physica al quantitty into ele ectrical qu uantity physic cal quantity sensor (non-linea ar) d differentia al equation n ellectrical qu uantity sensors s e exist for many m qua antities, b ut outputt electrica al quantitiies are lim mited → Classifica C ation by electrical e sensing: s • • • • • • voltage curren nt resista ance capaccitance inducttance freque ency (Lambda probe, th hermo cou uple; active senso ors) (photo dio ode/transistor) (tthermisto or, strain gauge) (humidity sensor, p proximity switch) (proximity y switch, L LVDT) (indirect fo or L and C; countters) 2.2 2 Mod deling sensor circuits c 2.2.1 2 Sim mple DC model m • model physical (input) quantity ass parame eter (defin ned in .P PARAM dirrective) • model sensor as a elemen nt V, I, R//C/L with expression as va lue Tspice he elp on “Waveform Arithmetiic” see LT • good fo or DC sw weep (.DC C) or para ameter sw weep (.S STEP) example: e : force se ensor with w voltage outpu ut, sensitivity s y = 5V/10 00N, output o lim mited to 0…5V (with .ST TEP comm mand you u need n no a additional .PARAM M) Prof. P Dr.-Ing. Gro oßmann V V3.0 25 EEE536JJ2: Contrrol & Auto omation 2.2.2 2 Con ntrolling physica al quantitties • modell physical (input) quantity q a as voltage source e • modell sensor as a contro olled volta age source e: o E: with gain n or tabled values V: with arb bitrary ex xpression n o BV • suitab ble for tran nsient, AC C, DC an nd parameter analysis BV B accep pts expresssions inc cluding: • voltage e from a node n to ground g (V V(node)) • voltage e between two nodes (V(n node1,no ode2)) • currentts (see Waveform W mViewer AddTraces dialo og for ava ailable cu urrents) • variablle time for f transie ent analyysis, varia able freq q and w fo or AC analysis Prof. P Dr.-Ing. Gro oßmann V V3.0 26 EEE536JJ2: Contrrol & Auto omation 2.2.3 2 Dyn namic be ehaviour system s de escription n: (non-)linear ord dinary diff fferential equation (ODE) in n most ca ases separable in (non-)lin near static c and line ear time-d dependen nt part physical p q quantity intermediate e quantity y y x outputt quantity y u y x (non-)llinear sta atic charracteristic c tim me dependency example: e : 1st orde er ODE for a linea ar force sensor: ⋅ t consstant of th he system m, : time : static sen nsitivity [V V/N] ⋅ • final ou utput ∞ t ⋅ 0 • 95% off final vallue reach hed after 3 → nse time e respon F F0 impulse rresponse: 8 U = k F0 Uouut ≔3 τ 0 → Fourier-/L F Laplace--Transform: repla ace ⋅ ⋅ Transfer T ffunction: Prof. P Dr.-Ing. Gro oßmann 1 V V3.0 t ⋅ → ⋅, resp.: 1 ⋅ 95% of o final value 3τ ⋅ 1 ⋅ 27 EEE536JJ2: Contrrol & Auto omation Sources S E and BV V can mod del a systtem given n by its La aplace tra ansfer function; E may be either a linear ga ain or a ta able or a LAPLACE L E expresssion: BV B can co ombine non-linearr and dyn namic beh havior (fo orce senssor: limite ed output,, delay d time e constan nt 0.1 1 , pulse d input fo orce (Tper = 2 s)): Active A filter based d on BV with w LAPL LACE exp pression: lo ow pass: high h passs: Prof. P Dr.-Ing. Gro oßmann ⋅ ⋅ ⋅ V V3.0 28 EEE536JJ2: Contrrol & Auto omation 2.3 2 Volttage sou urces 2.3.1 2 Lam mbda pro obe e exhaust gas air 0,8 V UDiff + O + UDiff 0,45 V O ZrO2 0,2 V λ 1 ∶ response r time: tyyp. 1.5 s → maassofair/ /14.7g masssofgazolline/1g = 0.5 s model m witth tabled values and delay:: Prof. P Dr.-Ing. Gro oßmann V V3.0 29 EEE536JJ2: Contrrol & Auto omation 2.3.2 2 The ermo cou uples Refference jun nction U Th Mea asurement junction metal A different conductors c welded to ogether metal B kn nown temp perature 80 unknown mperature tem ∆T Th h (ty pe E) U [mV] 75 Ch ro me l/C on sta nt an 70 65 60 pe (ty J) e an yp l (t nt e a st lum l/A on e c n/ rom iro Ch 55 50 45 40 K) 35 30 cop pper/constan ntan (type T) 25 ) ype R um (t i in t la ium/P Rhod % 3 1 pe S) atinum Pla um (ty n ti a la P / odium 0%Rh -1 m u l tin Pla 20 15 10 -200 5 ϑ [°C] 0 -5 0 200 400 600 800 0 1000 1200 1400 1600 180 00 -10 Δ ⋅Δ ⋅Δ ⋅Δ ⋯ tabled in specifiication IE EC 584 Prof. P Dr.-Ing. Gro oßmann V V3.0 30 EEE536JJ2: Contrrol & Auto omation model: m • depends no on-linearly y upon te emperatu ure → source B BV • temperrature spread dela ayed → in nclude LAPLACE L expresssion in BV V • can n drive cu urrents up to some e mA → internal resistor response r time 3⋅2 6 , in nternal res sistance = 10 Ω simulatio s on: therm mo couple e with insttrumentattion amplifier Resource R e: 232 2_thermo ocp_ina11 18.asc Circuit C de escription: s cop py thermo o couple model above add d INA118 (symme etric supply VDCSY YM = ±5V V, low wer right pin p groun ded) add d RG for gain g ≈ 100 0 Jobs: J DC C sweep fo or tempe erature T = 0…500 0K wattch outpu ut voltage e Prof. P Dr.-Ing. Gro oßmann V V3.0 31 EEE536JJ2: Contrrol & Auto omation 2.4 2 Currrent sou urces 2.4.1 2 Pho oto diode e hf >> Wg a Ge spectral sensitivity of Si and 1 contakt (anode) hf > Wg p + Ge e Si + 0,5 + n + human eye 0 400 contact (ccathode) Produce P a constan nt currentt (under ne egative bias): 600 80 00 1000 1200 140 00 1600 λ [nm] Sola ar cell = stand-alon s ne photo diode: ID<0 ID<0 UD<0 UD>0 U0 ⋅ 1 dark currrent ⋅ photo currrent IF ID UD -U U0 EV=0 EV1 EV2 Datashee D et: SFH2 203 sola ar cell p photo dio ode EV3 -U0/R Prof. P Dr.-Ing. Gro oßmann V V3.0 32 EEE536JJ2: Contrrol & Auto omation simulatio s on: solarr cell Resource R e: 241 1_solar_c cell.asc Circuit C de escription: s model solar cell as d iode BAS S16 and se biased d) parrallel current sourcce (revers sup pply V1: parallel p vo oltage sou urce Jobs: J dettermine current vss. voltage characte eristic of ssolar cell for V1 ∈ [-2 V; V +1 V] a and oto curren nts 0 / 2 25 mA / 50 mA / 75 5 mA an d 100 mA A pho simulatio s on: solarr cell matc ching imp pedance Resource R e: 241 1_solar_c cell_matcch.asc Circuit C de escription: s sola ar cell (Iphoto = 100 0 mA; no supply vo oltage!) Jobs: J parrameter sweep s forr global parameter p r rload ∈ [1 Ω; 10 1 Ω] parrallel load d resistor (value in n curly bra ackets “{ rload}””) disp play power in load d resistorr find d maximu um and m matching impedanc i ce simulatio s on: photto diode Resource R e: 241 1_photodiode.asc , 241_photodiode2.asc Circuit C de escription: s build circuit on right sside with Jobs: J • photo dio ode (use diode + I) • op amp (supply ( + +5 V / ground); • feedback k R = 5 kkΩ 1) se earch data asheet off SFH203 30 for Prof. P Dr.-Ing. Gro oßmann • • • reverse e saturatio on curren nt junction n capacita ance and d sensitiv vity of pho oto curren nt to illum mination S [A/lx] V V3.0 33 EEE536JJ2: Contrrol & Auto omation 2) co onfigure photo p currrent source (value e = {S*Evv}) ad dd directiv ve .para am S=… rename dio ode mode el to mydiode, ad dd SPICE E directiv ve: model mydiode m ) .m D(N=2 IS=… CJO=…) sim mulate ou utput volttage vs. input illum mination E Ev = 1 lx .. 104 lx (directive: .step d dec param EV 1 10k 2 20) 3) re eplace R with w 1 MΩ Ω, sweep photo current c fro om 10 nA A to 1 µA co ompare output with h ideal ch haracteris stic 2.5 ⋅ exxplain what happe ened (hintt: bias currents) 4) re eplace µA A741 with h AD8541 and com mpare ag ain simulatio s on: dynamics of photo p diod de Resource R e: 241 1_photo_ _dyn1.ascc, 241_ph hoto_dyn2.asc Circuit C de escription: s build circuit on right sside Jobs: J oto diode: diode w ameters pho with para as above a an nd curren t source PUL LSE (I1 1=0, I2 =100µA, , Ton n=1ns, Tperiod d=2ns) 2.5V RL • set s RL = 10 Ω, simulate 4 ns transient, view vvoltage at RL • a add param metric sw weep for model m parameter C CJO = 5 | 10 | 15p pF (.step D mydio ode(CJO) ) list 5p 10p 15p) • re epeat witth RL = 10 0 kΩ; what happened? • s set PULSE E: Ton = 1µs, Tperio od=2µs a and simulate 4 µs e explain the differen nce! Prof. P Dr.-Ing. Gro oßmann V V3.0 34 EEE536JJ2: Contrrol & Auto omation 2.4.2 2 Pho oto trans sistor hf B E C C n p IF IC ^ = IF IC = B IF B E n E C • Basse of BJT T is open to light • currrent ampllification: ⋅ • lowe er bandw width than n photo d iodes IC U0 illumination U0 R UCE R UCE C U0 Simulatio S on: photto transis stor Resource R e: 242 2_photo_ _transisto r_DC/AC C/tran.asc c Circuit C de escription: s build circuit on right sside ansistor = BC550C C; (tra currrent: DC= =2µA and d AC=2µA A) V1=5V IF<5µA A 5kΩ Jobs: J Prof. P Dr.-Ing. Gro oßmann UR Ana alyze UR(I ( F) (linea rity, phas se, cut-offf frequen ncy, …) V V3.0 35 EEE536JJ2: Contrrol & Auto omation 2.4.3 2 Currrent sou urces in LTspice voltage-co v ontrolled current sources: s curren nt = G ⋅ control c vo oltage currentt = interpo olated tab ble A generall controlle ed curren nt source acceptin ng expres ssions and d Laplace e transfer function f a also exists: age sourc ce BV syntax: ssee volta Prof. P Dr.-Ing. Gro oßmann V V3.0 36 EEE536JJ2: Contrrol & Auto omation 2.5 2 Resistors 2.5.1 2 NTC C Tempera Negative N ature Coe efficient: undoped u semicond ductors in ncrease n number of o free charges witth temperature → resistance r e smallerr ⋅ 10 6 R [Ω] 10 10 5 4 3 10 -40 0 40 ϑ [°C]] 120 0 Datashee D et: Visha ay, Cantherm Prof. P Dr.-Ing. Gro oßmann V V3.0 37 EEE536JJ2: Contrrol & Auto omation 2.5.2 2 Gas s sensorr Semicond S ducting metal m oxid de: • reduce ed or oxid dized by gases g → change in resista ance • heated d for stable operattion and ffaster rea action meta al oxide (SnO O2) ceramic c p pipe de electrod wire w h heating character c ristic: stra aight line in double e-log diag gram → R/R0 y y=log(.) → slope: 1 10 0 1 Δ logg -1 ⋅Δ ⋅ log 0.1 -2 0.01 0.1 0.2 -1 0.5 1 2 5 c/c0 10 x=log g(.) 1 0 Datashee D et: Figaro o TGS 82 22 Prof. P Dr.-Ing. Gro oßmann V V3.0 38 EEE536JJ2: Contrrol & Auto omation 2.5.3 2 Stra ain gaug ges ⋅ Δ → Δ Δ Δ Δ Δϱ ⋅ 1 2μ Δϱ ϱ strain µ = 0.5 0 Poisson n’s ratio (metals) ( ∆ϱ= =0 change e of specific resista ance (me etals) R: nom minal valu ue (typ. 120 Ω, 350 Ω or 1000 1 Ω) Prof. P Dr.-Ing. Gro oßmann V V3.0 39 EEE536JJ2: Contrrol & Auto omation 2.5.4 2 Eva aluation of o resistance 2.5.5 2 Wheatstone e bridge R3+ΔR3 U0 R4+ΔR4 UBr R1+ΔR1 R2+ΔR2 iff ⋅ : iff Δ and a Δ ⋅ Δ Δ 2 Δ Δ 2 Δ Δ ⋅ Δ Δ ⋅ 2 Δ Δ Δ Δ but: b non-linear for single se ensor (on nly one ∆R ∆ i ≠ 0)! 2.5.6 2 Brid dge with differen nce ampl ifier R R+ +ΔR U0 ∞ Uout + R R ⋅ Δ 2 liinear eve en for larg ge ∆R > R Prof. P Dr.-Ing. Gro oßmann V V3.0 40 EEE536JJ2: Contrrol & Auto omation 2.5.7 2 LTs spice sim mulations s of resis stive sen nsors simulation s n: strain gauges Resource R e: 257 7_straingauge.ascc Circuit C de escription: s brid dge 4 x 1k resistorrs (R1 and R2 in series, R3 and R4 in serie es) volttage supp ply +10 V V; cha ange valu ue of R2 tto “{1k + DR}”, Jobs: J sim mulate parrameter ssweep for DR = -5 500 Ω …5 500 Ω; view w bridge voltage dettermine linearity errror (ma ax deviation from line betw ween startt & end) hintt: subtrac ct line equ uation fro om output (calcula ate slope first) cha ange valu ue of R1 tto “{1k - DR}”; D how w about liinearity o of output? ? Prof. P Dr.-Ing. Gro oßmann V V3.0 41 EEE536JJ2: Contrrol & Auto omation simulatio s on: NTC C sensor Resource R e: 257 7_NTC1.a asc, 257 7_NTC2.a asc, 257_ _NTC_lin .asc Circuit C de escription: s brid dge with 4 x 4.7kΩ Ω resistorrs + differrence am plifier using µA74 41 sup pply voltage: bridg ge +10 V, opamp ±10 ± V cha ange valu ue of feed dback res sistor to “{4.7k “ +D DR}” Jobs: J sim mulate parrameter ssweep for DR = -4 4500 Ω … …4500 Ω; is output o still non-line ear? cha ange feed dback ressistor valu ue to “{1k k * exp(B2 25/T - B2 25/T0)}”, determine B25 B and T0 from m Vishay NTC N data asheet mulate parrameter ssweep for T = [233 3 K; 398 K] sim (i.e. -40 °C… …125 °C)) and plo ot tempera ature cha aracteristic ze the ch aracteris stic around 40 °C ((T =313 K) K Let’s lineariz h a resisttor Rp pa arallel to the NTC.. For the best resu ult, the with currvature (second de erivative) should be b 0 at the e center. do paramete er sweep ps for T an nd Rp (10 00 Ω…1 kΩ, step 100 Ω). nts: 2nd de erivative = 0 mean ns 1st derrivative ha as a max ximum. hin The e derivative in Wa aveformVi Viewer is called “D ()”. simulatio s on: gas sensor s Resource R e: 257 7_gas.asc c Circuit C de escription: s resistor + vo oltage sou urce Jobs: J dettermine fo ormula fo or resistan nce Rs off gas sen nsor TGS822 as detector d for ethan nol (for R0 assum me 5 kΩ)) sim mulate for concentrrations 50 5 ppm … 5000 p ppm disp play Rs/R R0 (= U(ssource) / I(R) / R0)) com mpare witth datash heet diagrram, optimize form mula if ne eeded Prof. P Dr.-Ing. Gro oßmann V V3.0 42 EEE536JJ2: Contrrol & Auto omation 2.5.8 2 Non n-linear resistors r s 2.5.8.1 2 S Static mo odel • non-lin nearity with respec ct to U-I ccharacterristic → • current i is a fun nction of voltage u across pins → • model:: current source co ontrolled by its ow wn voltage e ⋅ exp e example: e : diode 1 ; ⋅ 25.85 @300 0 2.5.8.2 2 F From phy ysical to electron nic model p region n cha arge distribution arround pn junction (dio ode) with voltage u u; total ch harge: n region n p(x x) pn junction n(x) ⋅ exxp disttribution is i stable (for ) butt charge carriers c re ecombine e and are e rep placed after averag ge “transffer time” tT -x x u → when w u ch hanges → Q chan nges → a additional current iF u Prof. P Dr.-Ing. Gro oßmann ⋅ iQ , modelled by pa arallel C: : non--linear! Cd V V3.0 43 EEE536JJ2: Contrrol & Auto omation non-linea n r capacito ors in LTspice pro ovide exp pression for f charge e Q: 2.5.8.3 2 B Behaviou ural mode el capacitor c current: ⋅ ⋅ total curre ent: Fourier/La F aplace: ⋅ ⋅ ⋅ 1 ⋅ → model with source BI alone: Prof. P Dr.-Ing. Gro oßmann V V3.0 44 EEE536JJ2: Contrrol & Auto omation 2.6 2 Osc cillators • • • • Amp plifiers with positiv ve feed-b back for one o filtere ed freque ncy Ressonant fre equency adjusted by comp ponents R, R L or C Safe e transmission of pulses ovver distorted lines s Use ed with co ounters as a receive ers 2.6.1 2 LC oscillato or 2.6.2 2 RC oscillato or C C R C R Prof. P Dr.-Ing. Gro oßmann R V V3.0 45 EEE536JJ2: Contrrol & Auto omation 2.6.3 2 Tim mer IC 555 NE555 (single), 556 (dou Timer-IC: T uble); ICM M7555/6 (CMOS ssingle/do ouble) 2.6.3.1 2 M Monoflop p 8: 8 7: 7 6: 6 5: 5 VCC R 8 VCC discha arge threshold control reset r output o trigger GND G trig gger 7 1 VCC 3 Ri 6 C 4: 3: 2: 1: t K1: set s FF 5 K2 Ri 2 R Q 3 S Q 2 VCC 3 Uc c K2: reset FF F K1 Trigger ou ut Ri Timer 555 5 1 4 Start/Res S et: Q = L; diischarge = short to o ground → C discharrged (UC = 0) Trigger: T trrigger < VCC/3 V → K1 sets FF Q = H; diischarge high imp pedance (open sw witch) → lo oad C, tim me consta ant τ = RC R threshold: fo or t ≈ 1,1⋅RC: UC ≈ 2/3⋅VC CC (thresh hold at K K2) → Q=L new n start only upo on new trigger imp pulse Prof. P Dr.-Ing. Gro oßmann V V3.0 46 EEE536JJ2: Contrrol & Auto omation 2.6.3.2 2 O Oscillatorr VCC RA 2 VCC V 3 8 7 Uc 1 VCC V 3 RB 6 5 K2 R Q outt S Q 2 K1 C Timer 555 5 1 4 Start/Res S et: UC = 0 (diischarge → ground) → trig gger → FF F set out o = H: C loads via RA+RB (discharrge open)) w when UC > 2/3⋅VCC → FF reset out o = L: C discharrges via RB and dis scharge to t ground d w when UC < VCC/3 → FF se et 1,49 2 → periodiic operatiion, frequ uency: Prof. P Dr.-Ing. Gro oßmann V V3.0 ⋅ 47 EEE536JJ2: Contrrol & Auto omation 2.6.3.3 2 P Pulse wid dth modu ulator (PW WM): R RA dis scharge RB2 RB1 outt discharg ge CM out threshold d trigger thre eshold trig gger C mo onostable e vibrator (du uty cycle dependss on R and a CM) Oscillator O r with sho ort triggerr pulses load: l VC CC via RA and RB1 discharge d e: via RB22 to discharge LTspice analysis 2.6.3.4 2 a of Timerr 555 circ cuits Resource R e: 262 2_timer55 55.asc Circuit C de escription: s Build a Monoflop, an oscillato or and a PWM P with h Timer 555 5 (componentt NE555) Jobs: J Tra ansient an nalysis; disp play volta ages Prof. P Dr.-Ing. Gro oßmann V V3.0 48 EEE536JJ2: Contrrol & Auto omation 3 Sen nsor sy ystems s 3.1 3 Indu uctive proximit p ty switc ch • coil emits ma agnetic field • edd dy currentts induced in meta al objects s close to coil → incrreased losses (mo odeled ass ohmic re esistance e) • oscillation da amped, even e stop pped Prof. P Dr.-Ing. Gro oßmann V V3.0 49 EEE536JJ2: Contrrol & Auto omation simulatio s on: LC oscillator o and com mparator Resource R e: 310 0_LC_osc c.asc Circuit C de escription: s cop py circuit above. L L1 is sens sor coil Jobs: J disccuss the function of the cirrcuit (amp plifier, fee edback, re esonance e) set series re esistance e of L1 to 50 Ω and d view ou utput volta age. Whicch uation do we see h here? situ add d a peak--type recttifier to ou utput (dio ode + C=1 10 µF to ground). g How w large is s its outpu ut? Prof. P Dr.-Ing. Gro oßmann V V3.0 50 EEE536JJ2: Contrrol & Auto omation Resource R e: 310 0_prox_switch.ascc Circuit C de escription: s Cop py circuit above (ssimple inv verting co omparato or, additio onal seria al volttage sourrce) Jobs: J Exa amine output – wh hat happe ened? com mplete Sc chmitt trig gger; thre esholds U1 U = 1.5 V and U2 2 = 2.5 V (calculate re esistors a and ref vo oltage firs st) amine outtput again n – still distorted? exa Prof. P Dr.-Ing. Gro oßmann V V3.0 51 omation EEE536JJ2: Contrrol & Auto 3.2 3 Com mplex Sy ystems s 3.2.1 3 Amplifier circuits already a co overed: • • • • • Zin voltage e amplifie ers non-lin nearity input/o output imp pedance dynam mic behavviour active filters sourrce E/BV TAB BLE LAP PLACE Routt sourrce G/BI TAB BLE LAP PLACE • specia al resistors additional a l current--controlled sourcess: The co ontrolling current m must flow w through a voltage e source. If nece essary, ad dd a 0V ssource in path. • F: currrent sourc ce • H: voltage sourrce example: e : BJT B (operrating point in amplifier a rregion) with w current c ga ain C B E simulatio s on: mode el of a FET T Resource R e: 321 1_FET.as sc Circuit C de escription: s MO OSFET IR RF510, in put sourc ce UGS, voltage so ource UDSS = 10 V, BI with currrent = 0.68 ⋅ 3.8 ²; load re esistor 1 kΩ Jobs: J pro oduce cha aracteristtics of cha annel currrent ID an nd GVAL LUE curre ent verrsus UGS (DC swe eep for UGS = 2 V… 4 V). Lim mit of this simple m model? Ho ow can you impro ove it? Prof. P Dr.-Ing. Gro oßmann ² V V3.0 52 EEE536JJ2: Contrrol & Auto omation 3.2.2 3 Mod dulator multiply m in nput signal with high frequency f y carrier (before ( transmisssion over antenna)): 3.2.3 3 VCO O (voltag ge-contro olled osc cillator) output o fre equency dependin d g on inpu ut voltage e: hint: h → sine e phase integral in LT Tspice is idt(x) Prof. P Dr.-Ing. Gro oßmann V V3.0 2 ⋅ ⋅ 53 LM741 Operational Amplifier General Description The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is exceeded, as well as freedom from oscillations. The LM741C is identical to the LM741/LM741A except that the LM741C has their performance guaranteed over a 0˚C to +70˚C temperature range, instead of −55˚C to +125˚C. Features Connection Diagrams Metal Can Package Dual-In-Line or S.O. Package 00934103 00934102 Note 1: LM741H is available per JM38510/10101 Order Number LM741H, LM741H/883 (Note 1), LM741AH/883 or LM741CH See NS Package Number H08C Order Number LM741J, LM741J/883, LM741CN See NS Package Number J08A, M08A or N08E Ceramic Flatpak 00934106 Order Number LM741W/883 See NS Package Number W10A Typical Application Offset Nulling Circuit 00934107 © 2004 National Semiconductor Corporation DS009341 www.national.com LM741 Operational Amplifier August 2000 LM741 Absolute Maximum Ratings (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. (Note 7) LM741A LM741 ± 22V ± 22V ± 18V 500 mW 500 mW 500 mW ± 30V ± 15V ± 30V ± 15V ± 30V ± 15V Output Short Circuit Duration Continuous Continuous Continuous Operating Temperature Range −55˚C to +125˚C −55˚C to +125˚C 0˚C to +70˚C Storage Temperature Range −65˚C to +150˚C −65˚C to +150˚C −65˚C to +150˚C 150˚C 150˚C 100˚C N-Package (10 seconds) 260˚C 260˚C 260˚C J- or H-Package (10 seconds) 300˚C 300˚C 300˚C Vapor Phase (60 seconds) 215˚C 215˚C 215˚C Infrared (15 seconds) 215˚C 215˚C 215˚C Supply Voltage Power Dissipation (Note 3) Differential Input Voltage Input Voltage (Note 4) Junction Temperature LM741C Soldering Information M-Package See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of soldering surface mount devices. ESD Tolerance (Note 8) 400V 400V 400V Electrical Characteristics (Note 5) Parameter Conditions LM741A Min Input Offset Voltage LM741 Min LM741C Typ Max 1.0 5.0 Min Units Typ Max Typ Max 0.8 3.0 2.0 6.0 mV 4.0 mV TA = 25˚C RS ≤ 10 kΩ RS ≤ 50Ω mV TAMIN ≤ TA ≤ TAMAX RS ≤ 50Ω RS ≤ 10 kΩ 6.0 Average Input Offset 7.5 15 mV µV/˚C Voltage Drift Input Offset Voltage TA = 25˚C, VS = ± 20V ± 10 ± 15 ± 15 mV Adjustment Range Input Offset Current TA = 25˚C 3.0 TAMIN ≤ TA ≤ TAMAX Average Input Offset 30 20 200 70 85 500 20 200 nA 300 nA 0.5 nA/˚C Current Drift Input Bias Current TA = 25˚C Input Resistance TA = 25˚C, VS = ± 20V 1.0 TAMIN ≤ TA ≤ TAMAX, 0.5 30 TAMIN ≤ TA ≤ TAMAX 80 80 0.210 6.0 500 80 1.5 0.3 2.0 500 0.8 0.3 2.0 nA µA MΩ MΩ VS = ± 20V Input Voltage Range ± 12 TA = 25˚C TAMIN ≤ TA ≤ TAMAX www.national.com ± 12 2 ± 13 ± 13 V V Parameter (Continued) Conditions LM741A Min Large Signal Voltage Gain Typ LM741 Max Min Typ 50 200 LM741C Max Min Typ 20 200 Units Max TA = 25˚C, RL ≥ 2 kΩ VS = ± 20V, VO = ± 15V 50 V/mV VS = ± 15V, VO = ± 10V V/mV TAMIN ≤ TA ≤ TAMAX, RL ≥ 2 kΩ, VS = ± 20V, VO = ± 15V 32 V/mV VS = ± 15V, VO = ± 10V VS = ± 5V, VO = ± 2V Output Voltage Swing 25 15 V/mV 10 V/mV ± 16 ± 15 V VS = ± 20V RL ≥ 10 kΩ RL ≥ 2 kΩ V VS = ± 15V RL ≥ 10 kΩ ± 12 ± 10 RL ≥ 2 kΩ Output Short Circuit TA = 25˚C 10 Current TAMIN ≤ TA ≤ TAMAX 10 Common-Mode TAMIN ≤ TA ≤ TAMAX Rejection Ratio 25 35 Supply Voltage Rejection TAMIN ≤ TA ≤ TAMAX, Ratio VS = ± 20V to VS = ± 5V RS ≤ 50Ω 25 ± 14 ± 13 V 25 mA 95 86 96 90 70 90 dB 77 96 77 96 dB µs TA = 25˚C, Unity Gain 0.25 0.8 0.3 0.3 Overshoot 6.0 20 5 5 TA = 25˚C Slew Rate TA = 25˚C, Unity Gain Supply Current TA = 25˚C Power Consumption TA = 25˚C 0.437 1.5 0.3 0.7 VS = ± 20V 80 LM741 % MHz 0.5 0.5 V/µs 1.7 2.8 1.7 2.8 mA 50 85 50 85 mW 150 VS = ± 15V LM741A dB dB Rise Time Bandwidth (Note 6) V mA 70 80 RS ≤ 10 kΩ Transient Response ± 12 ± 10 40 RS ≤ 10 kΩ, VCM = ± 12V RS ≤ 50Ω, VCM = ± 12V ± 14 ± 13 mW VS = ± 20V TA = TAMIN 165 mW TA = TAMAX 135 mW VS = ± 15V TA = TAMIN 60 100 mW TA = TAMAX 45 75 mW Note 2: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. 3 www.national.com LM741 Electrical Characteristics (Note 5) LM741 Electrical Characteristics (Note 5) (Continued) Note 3: For operation at elevated temperatures, these devices must be derated based on thermal resistance, and Tj max. (listed under “Absolute Maximum Ratings”). Tj = TA + (θjA PD). Thermal Resistance θjA (Junction to Ambient) θjC (Junction to Case) Cerdip (J) DIP (N) HO8 (H) SO-8 (M) 100˚C/W 100˚C/W 170˚C/W 195˚C/W N/A N/A 25˚C/W N/A Note 4: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. Note 5: Unless otherwise specified, these specifications apply for VS = ± 15V, −55˚C ≤ TA ≤ +125˚C (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to 0˚C ≤ TA ≤ +70˚C. Note 6: Calculated value from: BW (MHz) = 0.35/Rise Time(µs). Note 7: For military specifications see RETS741X for LM741 and RETS741AX for LM741A. Note 8: Human body model, 1.5 kΩ in series with 100 pF. Schematic Diagram 00934101 www.national.com 4 General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μA/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output PIN CONFIGURATIONS OUT A 1 AD8541 5 V+ V– 2 +IN A 3 4 –IN A 00935-001 FEATURES Figure 1. 5-Lead SC70 and 5-Lead SOT-23 (KS and RJ Suffixes) APPLICATIONS 8 NC 2 7 V+ +IN A 3 6 OUT A 4 5 NC NC 1 –IN A V– AD8541 00935-002 ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentation Mobile communications Audio outputs Portable systems NC = NO CONNECT Figure 2. 8-Lead SOIC (R Suffix) Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 μA per amplifier, ideal for battery operation. Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages. The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (–40°C to +125°C). The AD8541 is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available in tape and reel only. OUT A 1 –IN A AD8542 8 V+ 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP (R, RM, and RU Suffixes) OUT A 1 14 OUT D –IN A 2 13 –IN D +IN A 3 12 +IN D AD8544 V+ 4 11 V– +IN B 5 –IN B 6 9 –IN C OUT B 7 8 OUT C 10 +IN C 00935-004 The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 μA per amplifier. 00935-003 GENERAL DESCRIPTION Figure 4. 14-Lead SOIC and 14-Lead TSSOP (R and RU Suffixes) Rev. F Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. AD8541/AD8542/AD8544 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................7 Applications....................................................................................... 1 Theory of Operation ...................................................................... 13 General Description ......................................................................... 1 Notes on the AD854x Amplifiers............................................. 13 Pin Configurations ........................................................................... 1 Applications..................................................................................... 14 Revision History ............................................................................... 2 Notch Filter ................................................................................. 14 Specifications..................................................................................... 3 Comparator Function ................................................................ 14 Electrical Characteristics............................................................. 3 Photodiode Application ............................................................ 15 Absolute Maximum Ratings............................................................ 6 Outline Dimensions ....................................................................... 16 Thermal Resistance ...................................................................... 6 Ordering Guide .......................................................................... 18 ESD Caution.................................................................................. 6 REVISION HISTORY 1/08—Rev. E to Rev. F Inserted Figure 21; Renumbered Sequentially.............................. 9 Changes to Figure 22 Caption......................................................... 9 Changes to Notch Filter Section, Figure 35, Figure 36, and Figure 37 .......................................................................................... 13 Updated Outline Dimensions ....................................................... 16 1/07—Rev. D to Rev. E Updated Format..................................................................Universal Changes to Photodiode Application Section .............................. 14 Changes to Ordering Guide .......................................................... 17 8/04—Rev. C to Rev. D Changes to Ordering Guide .............................................................5 Changes to Figure 3........................................................................ 10 Updated Outline Dimensions....................................................... 12 1/03—Rev. B to Rev. C Updated Format..................................................................Universal Changes to General Description .....................................................1 Changes to Ordering Guide .............................................................5 Changes to Outline Dimensions .................................................. 12 Rev. F | Page 2 of 20 AD8541/AD8542/AD8544 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 2.7 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C −40°C ≤ TA ≤ +125°C Input Bias Current IB 4 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift ΔIOS/ΔT VCM = 0 V to 2.7 V −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 2.2 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 40 38 100 50 2 45 500 4 100 2000 25 OUTPUT CHARACTERISTICS Output Voltage High VOH Output Voltage Low VOL Output Current IOUT ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin PSRR ISY SR tS GBP IL = 1 mA −40°C ≤ TA ≤ +125°C IL = 1 mA −40°C ≤ TA ≤ +125°C VOUT = VS − 1 V 2.575 2.550 2.65 35 100 125 15 ±20 50 f = 200 kHz, AV = 1 VS = 2.5 V to 6 V −40°C ≤ TA ≤ +125°C VO = 0 V −40°C ≤ TA ≤ +125°C 65 60 RL = 100 kΩ To 0.1% (1 V step) 0.4 76 38 55 75 V V mV mV mA mA Ω dB dB μA μA 0.75 5 980 63 V/μs μs kHz Degrees 40 38 <0.1 nV/√Hz nV/√Hz pA/√Hz ΦM NOISE PERFORMANCE Voltage Noise Density Current Noise Density en en in f = 1 kHz f = 10 kHz Rev. F | Page 3 of 20 AD8541/AD8542/AD8544 VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 3 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C −40°C ≤ TA ≤ +125°C Input Bias Current IB 4 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift OUTPUT CHARACTERISTICS Output Voltage High ΔIOS/ΔT VOH Output Voltage Low VOL Output Current IOUT ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density PSRR VCM = 0 V to 3 V −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 2.2 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C IL = 1 mA −40°C ≤ TA ≤ +125°C IL = 1 mA −40°C ≤ TA ≤ +125°C VOUT = VS − 1 V 0 40 38 100 50 2 2.875 2.850 2.955 32 100 125 18 ±25 50 f = 200 kHz, AV = 1 65 60 SR tS GBP ΦM RL = 100 kΩ To 0.01% (1 V step) 0.4 en en in f = 1 kHz f = 10 kHz Rev. F | Page 4 of 20 500 4 100 2000 25 VS = 2.5 V to 6 V −40°C ≤ TA ≤ +125°C VO = 0 V −40°C ≤ TA ≤ +125°C ISY 45 76 40 60 75 V V mV mV mA mA Ω dB dB μA μA 0.8 5 980 64 V/μs μs kHz Degrees 42 38 <0.1 nV/√Hz nV/√Hz pA/√Hz AD8541/AD8542/AD8544 VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 5 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C −40°C ≤ TA ≤ +125°C Input Bias Current IB 4 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift ΔIOS/ΔT VCM = 0 V to 5 V −40°C ≤ TA ≤ +125°C RL = 100 kΩ, VO = 0.5 V to 2.2 V −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +85°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 40 38 20 10 2 48 40 4 100 2000 25 OUTPUT CHARACTERISTICS Output Voltage High VOH Output Voltage Low VOL Output Current IOUT ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Full Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density PSRR IL = 1 mA −40°C ≤ TA ≤ +125°C IL = 1 mA −40°C ≤ TA ≤ +125°C VOUT = VS − 1 V 4.9 4.875 25 f = 200 kHz, AV = 1 65 60 SR BWP tS GBP ΦM RL = 100 kΩ, CL = 200 pF 1% distortion To 0.1% (1 V step) 0.45 en en in f = 1 kHz f = 10 kHz Rev. F | Page 5 of 20 100 125 30 ±60 45 VS = 2.5 V to 6 V −40°C ≤ TA ≤ +125°C VO = 0 V −40°C ≤ TA ≤ +125°C ISY 4.965 76 45 65 85 V V mV mV mA mA Ω dB dB μA μA 0.92 70 6 1000 67 V/μs kHz μs kHz Degrees 42 38 <0.1 nV/√Hz nV/√Hz pA/√Hz AD8541/AD8542/AD8544 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage (VS) Input Voltage Differential Input Voltage1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) 1 Rating 6V GND to VS ±6 V −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C For supplies less than 6 V, the differential input voltage is equal to ±VS. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Package Type 5-Lead SC70 (KS) 5-Lead SOT-23 (RJ) 8-Lead SOIC (R) 8-Lead MSOP (RM) 8-Lead TSSOP (RU) 14-Lead SOIC (R) 14-Lead TSSOP (RU) ESD CAUTION Rev. F | Page 6 of 20 θJA 376 230 158 210 240 120 240 θJC 126 146 43 45 43 36 43 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W AD8541/AD8542/AD8544 TYPICAL PERFORMANCE CHARACTERISTICS 180 160 VS = 2.7V AND 5V VCM = VS/2 350 140 300 INPUT BIAS CURRENT (pA) 120 100 80 60 40 250 200 150 100 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 INPUT OFFSET VOLTAGE (mV) 3.5 0 –40 00935-005 0 –4.5 4.5 Figure 5. Input Offset Voltage Distribution 6 0 INPUT OFFSET CURRENT (pA) 100 120 140 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 VS = 2.7V AND 5V VCM = VS/2 5 4 3 2 1 0 –3.5 –35 5 –15 25 45 65 85 TEMPERATURE (°C) 105 145 125 –1 –55 00935-006 –4.0 –55 Figure 6. Input Offset Voltage vs. Temperature –35 –15 5 25 45 65 85 TEMPERATURE (°C) 105 125 145 00935-009 INPUT OFFSET VOLTAGE (mV) 20 40 60 80 TEMPERATURE (°C) 7 VS = 2.7V AND 5V VCM = VS/2 0.5 Figure 9. Input Offset Current vs. Temperature 9 160 VS = 2.7V AND 5V VCM = VS/2 POWER SUPPLY REJECTION (dB) 140 7 6 5 4 3 2 1 VS = 2.7V TA = 25°C 120 100 80 –PSRR 60 +PSRR 40 20 0 –20 0 –0.5 0.5 1.5 2.5 3.5 COMMON-MODE VOLTAGE (V) 4.5 5.5 –40 100 00935-007 INPUT BIAS CURRENT (pA) 0 Figure 8. Input Bias Current vs. Temperature 1.0 8 –20 00935-008 50 20 Figure 7. Input Bias Current vs. Common-Mode Voltage 1k 10k 100k FREQUENCY (Hz) 1M Figure 10. Power Supply Rejection vs. Frequency Rev. F | Page 7 of 20 10M 00935-010 NUMBER OF AMPLIFIERS 400 VS = 5V VCM = 2.5V TA = 25°C AD8541/AD8542/AD8544 60 SMALL SIGNAL OVERSHOOT (%) 100 SOURCE 10 SINK 1 0.1 0.01 0.1 1 LOAD CURRENT (mA) 10 100 +OS 40 –OS 30 20 10 0 00935-011 0.01 0.001 50 10 Figure 11. Output Voltage to Supply Rail vs. Load Current 3.0 SMALL SIGNAL OVERSHOOT (%) OUTPUT SWING (V p-p) 60 2.0 1.5 1.0 0.5 1k 10k 100k FREQUENCY (Hz) 1M 10M VS = 2.7V RL = 2kΩ TA = 25°C 50 40 +OS 30 –OS 20 10 0 00935-012 0 10k Figure 14. Small Signal Overshoot vs. Load Capacitance VS = 2.7V VIN = 2.5V p-p RL = 2kΩ TA = 25°C 2.5 100 1k CAPACITANCE (pF) 10 100 1k CAPACITANCE (pF) 10k 00935-015 1k Δ OUTPUT VOLTAGE (mV) VS = 2.7V RL = 10kΩ TA = 25°C VS = 2.7V TA = 25°C 00935-014 10k Figure 15. Small Signal Overshoot vs. Load Capacitance Figure 12. Closed-Loop Output Voltage Swing vs. Frequency VS = 2.7V RL = ∞ TA = 25°C 50 VS = 2.7V RL = 100kΩ CL = 300pF AV = 1 TA = 25°C +OS 40 30 –OS 1.35V 20 0 10 100 1k CAPACITANCE (pF) 10k 50mV 10µs Figure 16. Small Signal Transient Response Figure 13. Small Signal Overshoot vs. Load Capacitance Rev. F | Page 8 of 20 00935-016 10 00935-013 SMALL SIGNAL OVERSHOOT (%) 60 AD8541/AD8542/AD8544 90 VS = 2.7V RL = 2kΩ AV = 1 TA = 25°C VS = 5V TA = 25°C COMMON-MODE REJECTION (dB) 80 10µs 60 50 40 30 20 10 0 –10 1k 100k FREQUENCY (Hz) 1M 10M Figure 20. Common-Mode Rejection vs. Frequency Figure 17. Large Signal Transient Response 5 VS = 2.7V RL = NO LOAD TA = 25°C VS = 5V RL = NO LOAD TA = 25°C 40 90 20 135 0 180 3 2 1 0 –1 –2 –3 00935-040 45 PHASE SHIFT (Degrees) 60 INPUT OFFSET VOLTAGE (mV) 4 80 1k 10k 100k FREQUENCY (Hz) 1M 00935-018 –4 10M –5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 COMMON-MODE VOLTAGE (V) Figure 21. Input Offset Voltage vs. Common-Mode Voltage Figure 18. Open-Loop Gain and Phase vs. Frequency 10k 160 VS = 5V TA = 25°C 140 1k Δ OUTPUT VOLTAGE (mV) 120 100 80 –PSRR 60 +PSRR 40 20 0 VS = 5V TA = 25°C 100 SOURCE 10 SINK 1 0.1 –40 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 0.01 0.001 Figure 19. Power Supply Rejection Ratio vs. Frequency 0.01 0.1 1 LOAD CURRENT (mA) 10 100 Figure 22. Output Voltage to Supply Rail vs. Load Current Rev. F | Page 9 of 20 00935-021 –20 00935-019 POWER SUPPLY REJECTION RATIO (dB) GAIN (dB) 10k 00935-020 500mV 00935-017 1.35V 70 AD8541/AD8542/AD8544 5.0 4.0 SMALL SIGNAL OVERSHOOT (%) 4.5 OUTPUT SWING (V p-p) 60 VS = 5V VIN = 4.9V p-p RL = NO LOAD TA = 25°C 3.5 3.0 2.5 2.0 1.5 1.0 VS = 5V RL = 2kΩ TA = 25°C 50 40 +OS 30 –OS 20 10 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 00935-022 0 Figure 23. Closed-Loop Output Voltage Swing vs. Frequency, 5.0 10k 60 SMALL SIGNAL OVERSHOOT (%) OUTPUT SWING (V p-p) 4.0 100 1k CAPACITANCE (pF) Figure 26. Small Signal Overshoot vs. Load Capacitance VS = 5V VIN = 4.9V p-p RL = 2kΩ TA = 25°C 4.5 10 00935-025 0.5 3.5 3.0 2.5 2.0 1.5 1.0 VS = 5V RL = ∞ TA = 25°C 50 40 +OS 30 –OS 20 10 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 10 00935-023 0 Figure 24. Closed-Loop Output Voltage Swing vs. Frequency VS = 5V RL = 100kΩ CL = 300pF AV = 1 TA = 25°C VS = 5V RL = 10kΩ TA = 25°C 40 +OS 2.5V 30 –OS 10 50mV 0 10 100 1k CAPACITANCE (pF) 10k 10µs Figure 28. Small Signal Transient Response Figure 25. Small Signal Overshoot vs. Load Capacitance Rev. F | Page 10 of 20 00935-027 20 00935-024 SMALL SIGNAL OVERSHOOT (%) 10k Figure 27. Small Signal Overshoot vs. Load Capacitance 60 50 100 1k CAPACITANCE (pF) 00935-026 0.5 AD8541/AD8542/AD8544 VS = 5V RL = 2kΩ AV = 1 TA = 25°C VS = 5V RL = 10kΩ AV = 1 TA = 25°C VIN VOUT 2.5V 10µs 1V Figure 29. Large Signal Transient Response 60 90 20 135 0 180 100k FREQUENCY (Hz) 1M 10M Figure 30. Open-Loop Gain and Phase vs. Frequency 50 40 30 20 10 0 0 1 2 3 4 SUPPLY VOLTAGE (V) 5 Figure 32. Supply Current per Amplifier vs. Supply Voltage Rev. F | Page 11 of 20 6 00935-031 40 PHASE SHIFT (Degrees) 45 00935-029 GAIN (dB) 60 SUPPLY CURRENT/AMPLIFIER (µA) TA = 25°C 80 10k 20µs Figure 31. No Phase Reversal VS = 5V RL = NO LOAD TA = 25°C 1k 00935-030 1V 00935-028 2.5V AD8541/AD8542/AD8544 VS = 5V MARKER SET @ 10kHz MARKER READING: 37.6nV/ Hz TA = 25°C 50 VS = 5V 15nV/DIV 45 40 VS = 2.7V 35 30 20 –55 –35 –15 5 25 45 65 85 TEMPERATURE (°C) 105 125 145 0 1000 800 VS = 2.7V AND 5V AV = 1 TA = 25°C 600 500 400 300 200 100 10k 100k 1M FREQUENCY (Hz) 10M 100M 00935-033 IMPEDANCE (Ω) 700 0 1k 10 15 FREQUENCY (kHz) Figure 35. Voltage Noise Figure 33. Supply Current per Amplifier vs. Temperature 900 5 Figure 34. Closed-Loop Output Impedance vs. Frequency Rev. F | Page 12 of 20 20 25 00935-034 25 00935-032 SUPPLY CURRENT/AMPLIFIER (µA) 55 AD8541/AD8542/AD8544 THEORY OF OPERATION NOTES ON THE AD854X AMPLIFIERS Higher Output Current The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways, including lower supply current for 1 MHz gain bandwidth, higher output current, and better performance at lower voltages. At 5 V single supply, the short-circuit current is typically 60 μA. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing, or sinking. Lower Supply Current for 1 MHz Gain Bandwidth The AD854x series typically uses 45 μA of current per amplifier, which is much less than the 200 μA to 700 μA used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain. Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the AD8531/AD8532/AD8534 parts for output currents to 250 mA. Information on these parts is available from your Analog Devices, Inc. representative, and data sheets are available at www.analog.com. Better Performance at Lower Voltages The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60°C, making the part easy to use. Rev. F | Page 13 of 20 AD8541/AD8542/AD8544 APPLICATIONS The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 36 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 37. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency. Figure 38 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FDNR) notch filter has fewer critical matching requirements than the twin-T notch, where as the Q of the FDNR is directly proportional to a single resistor R1. Although matching component values is still important, it is also much easier and/or less expensive to accomplish in the FDNR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FDNR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit. R1 Q ADJUST 200Ω 2.5VREF 2.5VREF 1/4 AD8544 U2 6 f0 = R/2 50kΩ C 26.7nF 1 2πRC C 26.7nF U1 4 1 f= VOUT 1/2 AD8542 11 R 2.61kΩ 1 2π LC1 R 2.61kΩ 13 12 1/4 AD8544 U4 14 NC U2 2.5VREF R2 2.5kΩ 5 6 Figure 38. FDNR 60 Hz Notch Filter with Output Buffer COMPARATOR FUNCTION R1 97.5kΩ 2.5VREF Figure 36. 60 Hz Twin-T Notch Filter, Q = 10 5.0V 3 2 2C 1 VIN R1 4 1– R1 + R2 VIN 1/4 AD8544 U1 R 2.61kΩ 5 L = R2C2 1 R 2 2.5VREF 7 R 4 3 C2 1µF 7 AD8541 U1 4 6 VOUT 2.5VREF A comparator function is a common application for a spare op amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 μs propagation delay at 5 V and 5 μs overload recovery time. R2 1MΩ R1 1kΩ C C 00935-036 R/2 Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal) VOUT VIN 2.5VREF 2.5VDC 1/4 AD8541 00935-038 f0 = 2 2C 53.6µF 1/2 AD8542 00935-035 VIN 8 3 VOUT R 2.61kΩ 5.0V R 100kΩ 8 U3 10 C1 1µF VIN 7 R 100kΩ 1/4 AD8544 9 00935-037 NOTCH FILTER Figure 39. AD854x Comparator Application—Overload Detector Rev. F | Page 14 of 20 AD8541/AD8542/AD8544 C 100pF PHOTODIODE APPLICATION The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration. • Shielding the circuit. • Cleaning the circuit board. • Putting a trace connected to the noninverting input around the inverting input. • Using separate analog and digital power supplies. V+ OR 2 7 6 3 4 D 2.5VREF 2.5VREF VOUT AD8541 00935-039 Figure 40 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 MΩ to avoid excessive output offset. In addition, a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include the following: R 10MΩ Figure 40. High Input Impedance Application—Photodiode Amplifier Rev. F | Page 15 of 20 MF58 Glass Shell Precision NTC Thermistors The MF58 is a NTC thermistor which is manufactured using a combination of ceramic and semiconductor techniques. It is equipped with tinned axial leads and then wrapped with purified glass. Applications Dimensions(mm) Features Main Techno-Parameter Temperature compensation and detection for: • Household appliances (air conditioners, microwave ovens, electric fans, electric heaters etc.) • Office equipment (copiers, printers etc.) • Industrial, medical, environmental, weather and food processing equipment • Liquid level detection and flow rate measurement • Mobile phone battery • Apparatus coils, integrated circuits, quartz crystal oscillators and thermocouples. • Good stability and repeatability • High reliability • Wide range of resistance: 0.1~1000KΩ • Tight tolerance on resistance and Beta values • Usable in high-temperature and high-moisture environments • Small, light, strong package, • Suitable for automatic insertion on thru-hole PCBs • Rapid response • High sensitivity • Zero power resistance range (R25): 0.1~1000KΩ • Available tolerances of R25: F=±1% G=±2% H=±3% J=±5% K=±10% • B value (B25/50°C) range: 3100~4500K • Available tolerances of B value: ±0.5%, ±1%, ±2% • Dissipation factor: ≥2mW/°C (In Still Air) • Thermal time constant: ≤20S (In Still Air) • Operating temperature range: -55°C ~ +200°C • Rated Power: ≤50mW Specifications 8415 Mountain Sights Avenue • Montreal (Quebec), H4P 2B8, Canada Tel: (514) 739-3274 • 1-800-561-7207 • Fax: (514) 739-2902 E-mail: sales@cantherm.com • Website: www.cantherm.com 2008/Feb 2322 640 3/4/6.... Vishay BCcomponents NTC Thermistors, Accuracy Line FEATURES • Accuracy over a wide temperature range • High stability over a long life • Excellent price/performance ratio APPLICATIONS • Temperature sensing and control These thermistors have a negative temperature coefficient. The device consists of a chip with two tinned solid copper-plated leads. It is grey lacquered and colour coded, but not insulated. QUICK REFERENCE DATA PARAMETER VALUE Resistance value at 25 °C Tolerance on R25-value Tolerance on B25/85-value Maximum dissipation Dissipation factor δ (for information only) Response time Thermal time constant τ (for information only) Operating temperature range: at zero dissipation; continuously at zero dissipation; for short periods at maximum dissipation (500 mW) Climatic category Mass 3.3 Ω to 470 kΩ ±2%; ±3%; ±5%; ±10% ±0.5% to ±3% 500 mW 7 mW/K 8.5 mW/K (for 640..338 to 689) 1.2 s 15 s PACKAGING The thermistors are packed in bulk or tape on reel; see code numbers and relevant packaging quantities. −40 to +125 °C ≤150 °C 0 to 55 °C 40/125/56 ≈0.3 g ELECTRICAL DATA AND ORDERING INFORMATION R25 (Ω) B25/85-VALUE 3.3 4.7 6.8 10 15 22 33 47 68 100 150 220 330 470 680 1000 1500 2880 K ±3% 2880 K ±3% 2880 K ±3% 2990 K ±3% 3041 K ±3% 3136 K ±3% 3390 K ±3% 3390 K ±3% 3390 K ±3% 3560 K ±0.75% 3560 K ±0.75% 3560 K ±0.75% 3560 K ±0.75% 3560 K ±0.5% 3560 K ±0.5% 3528 K ±0.5% 3528 K ±0.5% www.vishay.com 70 COLOR CODE (see dimensions drawing and note 1) CATALOG NUMBER 2322 640 6.... R25 ±2% R25 ±3% R25 ±5% R25 ±10% I II III 4338 4478 4688 4109 4159 4229 4339 4479 4689 4101 4151 4221 4331 4471 4681 4102 4152 6338 6478 6688 6109 6159 6229 6339 6479 6689 6101 6151 6221 6331 6471 6681 6102 6152 3338 3478 3688 3109 3159 3229 3339 3479 3689 3101 3151 3221 3331 3471 3681 3102 3152 2338 2478 2688 2109 2159 2229 2339 2479 2689 2101 2151 2221 2331 2471 2681 2102 2152 orange yellow blue brown brown red orange yellow blue brown brown red orange yellow blue brown brown orange violet grey black green red orange violet grey black green red orange violet grey black green gold gold gold black black black black black black brown brown brown brown brown brown red red For technical questions contact: nlr.europe@vishay.com Document Number: 29049 Revision: 10-Oct-03 2322 640 3/4/6.... Vishay BCcomponents NTC Thermistors, Accuracy Line R25 ( Ω) B25/85-VALUE R25 ±2% R25 ±3% R25 ±5% R25 ±10% I II III 4202 4222 4272 4332 4472 4682 4103 4123 4153 4223 4333 4473 4683 4104 4154 4224 4334 4474 6202 6222 6272 6332 6472 6682 6103 6123 6153 6223 6333 6473 6683 6104 6154 6224 6334 6474 3202 3222 3272 3332 3472 3682 3103 3123 3153 3223 3333 3473 3683 3104 3154 3224 3334 3474 2202 2222 2272 2332 2472 2682 2103 2123 2153 2223 2333 2473 2683 2104 2154 2224 2334 2474 red red red orange yellow blue brown brown brown red orange yellow blue brown brown red orange yellow black red violet orange violet grey black red green red orange violet grey black green red orange violet red red red red red red orange orange orange orange orange orange orange yellow yellow yellow yellow yellow 3528 K ±0.5% 3977 K ±0.75% 3977 K ±0.75% 3977 K ±0.75% 3977 K ±0.75% 3977 K ±0.75% 3977 K ±0.75% 3740 K ±2% 3740 K ±2% 3740 K ±2% 4090 K ±1.5% 4090 K ±1.5% 4190 K ±1.5% 4190 K ±1.5% 4370 K ±2.5% 4370 K ±2.5% 4570 K ±1.5% 4570 K ±1.5% 2000 2200 2700 3300 4700 6800 10000 12000 15000 22000 33000 47000 68000 100000 150000 220000 330000 470000 COLOR CODE (see dimensions drawing and note 1) CATALOG NUMBER 2322 640 6.... Notes DERATING AND TEMPERATURE TOLERANCES 1. Dependent upon R25-tolerance, the band IV is coloured as follows: a) for R25 ±2%, band IV is coloured red Power derating curve. P (%) b) for R25 ±3%, band IV is coloured orange 100 c) for R25 ±5%, band IV is coloured gold d) for R25 ±10%, band IV is coloured silver. 0 40 DIMENSIONS in millimeters 0 55 85 Tamb ( o C) 125 PHYSICAL DIMENSIONS FOR RELEVANT TYPE H1 H2 CODE NUMBER Bmax 2322 640 ..... 6.338 to 6.221 5.0 H1 6.331 to 6.474 3.3 0.6 ±0.5 ±0.06 B T Ι ΙΙ ΙΙΙ ΛΙ L d 0.6 ±0.06 H2 L P Tmax max MIN. MAX. 1.0 4.0 6.0 24 ±1.5 2.54 4.0 − 2.0 ±1.0 6.0 24 ±1.5 2.54 3.0 MARKING The thermistors are marked with coloured bands; see dimensions drawing and “Electrical data and ordering information”. d P 2322 640 6.338 to 6.474. MOUNTING By soldering in any position. Document Number: 29049 Revision: 10-Oct-03 For technical questions contact: nlr.europe@vishay.com www.vishay.com 71 2322 640 3/4/6.... Vishay BCcomponents NTC Thermistors, Accuracy Line TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. 3.0 5 1 ∆T (K) TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. Curves valid for 2.2 to 10 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only). 2.5 2 2.0 Curves valid for 12 to 22 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. 1 ∆T (K) 4 2 3 3 3 1.5 4 2 1.0 1 0.5 0 40 0 40 80 0 40 120 160 o T ( C) TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. ∆T (K) 4.0 1 Curves valid for 33 to 47 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only). 3.5 2 3.0 3 2.5 0 40 80 TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. ∆T (K) 4.0 2 3.0 3 2.5 4 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0 40 80 0 40 120 160 o T ( C) TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. 6 ∆T (K) 5 1 4 2 3 Curves valid for 68 to 100 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. Curve 4: ∆R25/R25 = 1% (for 2322 640 5.... series only). 1 3.5 4 0 40 120 160 o T ( C) Curves valid for 150 to 220 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. 3 0 40 80 120 160 o T ( C) TEMPERATURE DEVIATION AS A FUNCTION OF THE AMBIENT TEMPERATURE. ∆T (K) 4.0 Curves valid for 330 to 470 kΩ. Curve 1: ∆R25/R25 = 5%. Curve 2: ∆R25/R25 = 3%. Curve 3: ∆R25/R25 = 2%. 1 3.5 3.0 2 2.5 3 2.0 1.5 2 1.0 1 0.5 0 40 0 www.vishay.com 72 40 80 120 160 o T ( C) 0 40 0 40 For technical questions contact: nlr.europe@vishay.com 80 120 160 o T ( C) Document Number: 29049 Revision: 10-Oct-03 2322 640 3/4/6.... NTC Thermistors, Accuracy Line RT VALUE AND TOLERANCE These thermistors have a narrow tolerance on the B-value, the result of which provides a very small tolerance on the nominal resistance value over a wide temperature range. For this reason the usual graphs of R = f(T) are replaced by Resistance Values at Intermediate Temperatures Tables, together with a formula to calculate the characteristics with a high precision. Vishay BCcomponents DETERMINATION OF THE RESISTANCE/TEMPERATURE DEVIATION FROM NOMINAL VALUE The total resistance deviation is obtained by combining the ‘R25-tolerance’ and the ‘resistance deviation due to B-tolerance’. When: X = R25-tolerance FORMULAE TO DETERMINE NOMINAL RESISTANCE VALUES Y = resistance deviation due to B-tolerance Z = complete resistance deviation, The resistance values at intermediate temperatures, or the operating temperature values, can be calculated using the following interpolation laws (extended “Steinhart and Hart”): 2 R (T) = R ref × e (2) ref × 100 % or Z ≈ X + Y. TC = temperature coefficient (1) 2 R 3 R –1 R T (R) = ⎛ A 1 + B 1 ln ---------- + C 1 ln ---------- + D 1 ln ----------⎞ ⎝ R ref R R ⎠ X Y Z = ⎛ 1 + ----------⎞ × ⎛ 1 + ----------⎞ – 1 ⎝ 100⎠ ⎝ 100⎠ When: 3 (A + B ⁄ T + C ⁄ T + D ⁄ T ) ref then: ∆T = temperature deviation, Z then: ∆T = ------- TC where: The temperature tolerances are plotted in the graphs on the previous page. A, B, C, D, A1, B1, C1 and D1 are constant values depending on the material concerned; see table below. Rref is the resistance value at a reference temperature (in this event 25 °C). T is the temperature in K. Formulae numbered (1) and (2) are interchangeable with an error of max. 0.005 °C in the range 25 °C to 125 °C and max. 0.015 °C in the range −40 °C to +25 °C. Example: at 0 °C, assume X = 5%, Y = 0.89% and TC = 5.08%/K (see Table ), then: ⎧ 5 Z = ⎨ 1 + ---------100 ⎩ ⎫ 0.89 × 1 + ----------- – 1 ⎬ × 100% 100 ⎭ ˙ = { 1.05 × 1.0089 – 1 } × 100% = 5.9345% ( ≈ 5.93% ) Z 5.93 ∆T = -------- = ----------- = 1.167 °C ( ≈ 1.17 ° C) TC 5.08 A NTC with a R25-value of 10 kΩ has a value of 32.56 kΩ between −1.17 and +1.17 °C. PARAMETERS FOR DETERMINING NOMINAL RESISTANCE VALUES B25/85-VALUE (K) 2880 2990 3041 3136 3390 3528(1) 3528(2) 3560 3740 3977 4090 4190 4370 4570 A B (K) C (105K2) D (106K3) A1 (10−3) B1 (10−4K−1) C1 (10−6K−2) D1 (10−7K−3) −9.094 −10.2296 −11.1334 −12.4493 −12.6814 −12.0596 −21.0704 −13.0723 −13.8973 −14.6337 −15.5322 −16.0349 −16.8717 −17.6439 2251.74 2887.62 3658.73 4702.74 4391.97 3687.667 11903.95 4190.574 4557.725 4791.842 5229.973 5459.339 5759.15 6022.726 229098 132336 −102895 −402687 −232807 −7617.13 −2504699 −47158.4 −98275 −115334 −160451 −191141 −194267 −203157 −27.4482 −25.0251 0.516652 31.96830 15.09643 −5914730 247033800 −11992560.91 −7522357 −3730535 −5414091 −3328322 −6869149 −7183526 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.354016 3.495020 3.415560 3.349290 3.243880 2.993410 2.909670 2.933908 2.884193 2.744032 2.569355 2.519107 2.460382 2.367720 2.264097 2.095959 4.955455 3.683843 2.658012 2.135133 1.632136 3.494314 4.118032 3.666944 2.626311 3.510939 3.405377 3.585140 3.278184 4.260615 4.364236 7.050455 −2.70156 −8.05672 0.719220 −7.71269 1.786790 1.375492 0.675278 1.105179 1.034240 1.255349 1.097628 Notes 1. Temperature < 25 °C. 2. Temperature ≥25 °C. Document Number: 29049 Revision: 10-Oct-03 For technical questions contact: nlr.europe@vishay.com www.vishay.com 73 PRODUCT INFORMATION TGS 822 - for the detection of Organic Solvent Vapors Features: Applications: * High sensitivity to organic solvent vapors such as ethanol * High stability and reliability over a long period * Long life and low cost * Uses simple electrical circuit * Breath alcohol detectors * Gas leak detectors/alarms * Solvent detectors for factories, dry cleaners, and semiconductor The sensing element of Figaro gas sensors is a tin dioxide (SnO2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration. The TGS 822 has high sensitivity to the vapors of organic solvents as well as other volatile vapors. It also has sensitivity to a variety of combustible gases such as carbon monoxide, making it a good general purpose sensor. Also available with a ceramic base which is highly resistant to severe environments as high as 200°C (model# TGS 823). The figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows: Rs = Sensor resistance of displayed gases at various concentrations Ro = Sensor resistance in 300ppm ethanol The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows: Rs = Sensor resistance at 300ppm of ethanol at various temperatures/humidities Ro = Sensor resistance at 300ppm of ethanol at 20°C and 65% R.H. Sensitivity Characteristics: Temperature/Humidity Dependency: 10 Air 10 Methane Rs/Ro 1 Carbonmonoxide Isobutane 0.1 Acetone 50 100 500 1000 Concentration (ppm) 5 2 R.H. 35% 50% 65% 100% Rs/Ro 1 .5 n-Hexane Benzene Ethanol 5000 0.1 -20 -10 0 10 20 30 40 50 Ambient Temperature (°C) IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO. Structure and Dimensions: 1 Sensing Element: SnO2 is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater. 2 Cap: Nylon 66 3 Sensor Base: Nylon 66 4 Flame Arrestor: 100 mesh SUS 316 double gauze 17 ± 0.5 5 45˚ 1 1.0±0.5 6 2 4 45˚ 6.5±0.5 16.5±0.5 9.5 3 um : mm Pin Connection and Basic Measuring Circuit: The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (VRL) increases as the sensor's resistance (Rs) decreases, depending on gas concentration. Basic Measuring Circuit: Standard Circuit Conditions: Item Symbol Rated Values Remarks Heater Voltage VH 5.0±0.2V AC or DC Circuit Voltage VC Max. 24V DC only Ps≤15mW Load Resistance RL Variable 0.45kΩ min. Electrical Characteristics: Symbol Condition Specification Rs Ethanol at 300ppm/air 1kΩ ~ 10kΩ Rs/Ro Rs(Ethanol at 300ppm/air) Rs(Ethanol at 50ppm/air) 0.40 ± 0.10 Heater Resistance RH Room temperature 38.0 ± 3.0Ω Heater Power Consumption PH VH=5.0V 660mW (typical) Item Sensor Resistance Change Ratio of Sensor Resistance Standard Test Conditions: TGS 822 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below: Test Gas Conditions: 20°±2°C, 65±5%R.H. Circuit Conditions: VC = 10.0±0.1V (AC or DC), VH = 5.0±0.05V (AC or DC), RL = 10.0kΩ±1% Preheating period before testing: More than 7 days FIGARO USA, INC. 121 S. Wilke Rd. Suite 300 Arlington Heights, IL 60005 Phone: (847)-832-1701 Fax: (847)-832-1705 email: figarousa@figarosensor.com REV: 09/02 Sensor Resistance (Rs) is calculated by the following formula: Rs = ( VC -1) x RL VRL Power dissipation across sensor electrodes (Ps) is calculated by the following formula: Ps = VC2 x Rs (Rs + RL)2 For information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc. SFH 2030 SFH 2030 F Silizium-PIN-Fotodiode mit sehr kurzer Schaltzeit Silizium-PIN-Fotodiode mit Tageslichtsperrfilter Silicon PIN Photodiode with Very Short Switching Time Silicon PIN Photodiode with Daylight Filter SFH 2030 SFH 2030 F Maβe in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified. Features Wesentliche Merkmale ● Speziell geeignet für Anwendungen im Bereich von 400 nm bis 1100 nm (SFH 2030) und bei 880 nm (SFH 2030 F) ● Kurze Schaltzeit (typ. 5 ns) ● 5 mm-Plastikbauform im LED-Gehäuse ● Auch gegurtet lieferbar ● Especially suitable for applications from 400 nm to 1100 nm (SFH 2030) and of 880 nm (SFH 2030 F) ● Short switching time (typ. 5 ns) ● 5 mm LED plastic package ● Also available on tape Anwendungen ● Industrieelektronik ● “Messen/Steuern/Regeln” ● Schnelle Lichtschranken für Gleich- und Wechsellichtbetrieb ● LWL Applications ● Industrial electronics ● For control and drive circuits ● Light-reflecting switches for steady and varying intensity ● Fiber optic transmission systems Typ (*ab 4/95) Bestellnummer Type (*as of 4/95) Ordering Code Gehäuse Package SFH 2030 (*SFH 203) Q62702-P955 SFH 2030 F (*SFH 203 FA) Q62702-P956 T13/4, klares bzw schwarzes Epoxy-Gieβharz, Lötspieβe im 2.54-mm-Raster (1/10), Kathodenkennzeichnung: kürzerer Lötspieβ, flach am Gehäusebund transparent and black epoxy resin, solder tab 2.54 mm (1/10) lead spacing, cathode marking: short solder tab, flat at package Semiconductor Group 442 SFH 2030 SFH 2030 F Grenzwerte Maximum Ratings Bezeichnung Description Symbol Symbol Wert Value Einheit Unit Betriebs- und Lagertemperatur Operating and storage temperature range Top; Tstg –55 ... +100 oC Löttemperatur (Lötstelle 2 mm vom Gehäuse entfernt bei Lötzeit t ≤ 3s) Soldering temperature in 2 mm distance from case bottom (t ≤ 3s) TS 300 oC Sperrspannung Reverse voltage VR 50 V Verlustleistung Total power dissipation Ptot 100 mW Kennwerte (TA = 25 oC) Characteristics Bezeichnung Description Symbol Wert Symbol Value Einheit Unit SFH 2030 SFH 2030 F S 80 (≥ 50) – nA/Ix S – 25 (≥ 15) µA Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity λS max 850 900 nm Spektraler Bereich der Fotoempfindlichkeit S = 10% von Smax Spectral range of sensitivity S = 10% of Smax λ 400 ...1100 800 ... 1100 nm Bestrahlungsempfindliche Fläche Radiant sensitive area A 1 1 mm2 Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area LxB 1x1 1x1 mm Abstand Chipoberfläche zu Gehäuseoberfläche Distance chip front to case surface H 4.0 ... 4.6 4.0 ... 4.6 mm Fotoempfindlichkeit Spectral sensitivity VR = 5 V, Normlicht/standard light A, T = 2856 K, VR = 5 V, λ = 950 nm, Ee = 0.5 mW/cm2 Semiconductor Group LxW 443 SFH 2030 SFH 2030 F Kennwerte (TA = 25 oC) Characteristics Bezeichnung Description Symbol Wert Symbol Value Einheit Unit SFH 2030 SFH 2030 F Halbwinkel Half angle ϕ ± 20 ± 20 Grad deg. Dunkelstrom, VR = 20 V Dark current IR 1 (≤ 5) 1 (≤ 5) nA Spektrale Fotoempfindlichkeit, λ = 850 nm Spectral sensitivity Sλ 0.62 0.59 A/W Quantenausbeute, λ = 850 nm Quantum yield η 0.89 0.86 Electrons Photon Leerlaufspannung Open-circuit voltage Ev = 1000 Ix, Normlicht/standard light A, T = 2856 K Ee = 0.5 mW/cm2, λ = 950 nm VL 420 (≥ 350) – mV VL – 370 (≥ 300) mV Kurzschluβstrom Short-circuit current Ev = 1000 Ix, Normlicht/standard light A, T = 2856 K Ee = 0.5 mW/cm2, λ = 950 nm IK 80 – µA IK – 25 µA Anstiegs und Abfallzeit des Fotostromes tr, tf Rise and fall time of the photocurrent RL= 50 kΩ; VR = 20 V; λ = 850 nm; Ip = 800 µA 5 5 ns Durchlaβspannung, IF = 80 mA, E = 0 Forward voltage VF 1.3 1.3 V Kapazität, VR = 0 V, f = 1 MHz, E = 0 Capacitance C0 11 11 pF Temperaturkoeffizient von VL Temperature coefficient of VL TCV –2.6 –2.6 mV/K Temperaturkoeffizient von IK, Temperature coefficient of IK Normlicht/standard light A λ = 950 nm TCI Rauschäquivalente Strahlungsleistung Noise equivalent power VR = 10 V, λ = 850 nm Nachweisgrenze, VR = 20 V, λ = 850 nm Detection limit Semiconductor Group %/K 0.18 – – 0.2 NEP 2.9 x 10–14 2.9 x 10–14 W √Hz D* 3.5 x 1012 3.5 x 1012 cm · √Hz W 444 SFH 2030 SFH 2030 F Relative spectral sensitivity SFH 2030 Srel = f (λ) Relative spectral sensitivity SFH 2030 F Srel = f (λ) Photocurrent IP = f (Ev), VR = 5 V Open-circuit-voltage VL= f (Ev) SFH 2030 Photocurrent IP = f (Ee), VR = 5 V Open-circuit-voltage VL= f (Ee) SFH 2030 F Total power dissipation Ptot = f (TA) Dark current IR = f (VR), E = 0 Directional characteristics Srel = f (ϕ) Semiconductor Group 445