Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
What igneous rocks are made of Minerals Texture • Phaneritic (plutonic rocks) • Aphanitic (volcanic rocks) • Fragmental (volcanic ashes) Minerals • Primary – Main minerals • Felsic • Mafics – Accessory minerals • Secondary minerals (alteration/metamorphism) Figure 3-7. Euhedral early pyroxene with late interstitial plagioclase (horizontal twins). Stillwater complex, Montana. Field width 5 mm. © John Winter and Prentice Hall. 2 micas granites Tourmaline granite Bt Kfs Ms Pl Figure 3-20. a. Pyroxene largely replaced by hornblende. Some pyroxene remains as light areas (Pyx) in the hornblende core. Width 1 mm. b. Chlorite (green) replaces biotite (dark brown) at the rim and along cleavages. Tonalite. San Diego, CA. Width 0.3 mm. © John Winter and Prentice Hall. Pyx Hbl Chl Bt IUGS classification • Based on main minerals (accessory & secondary minerals not used) • Quartz, Alkali Fsp, Plagioclase, Feldspathoids and Mafics – normalized to 100% • If M < 90: Re-normalize QAPF to 100% and use QAP or QAF • If M > 90: Normalize Ol+Px+Pg to 100% and use Ol-Px-Pg diagram (a) Classification of Igneous Rocks The rock must contain a total of at least 10% of the minerals below. Renormalize to 100% Q Quartzolite 90 90 Quartz-rich Granitoid 60 60 Granodiorite Granite Alkali Fs. Quartz Syenite Alkali Fs. Syenite 20 20 Quartz Monzonite Quartz Syenite 5 10 A Syenite (Foid)-bearing Syenite 35 Monzonite (Foid)-bearing Monzonite Quartz Monzodiorite 65 Monzodiorite (Foid)-bearing Monzodiorite 10 (Foid)-bearing Alkali Fs. Syenite (Foid) Monzosyenite Figure 2-2. A classification of the phaneritic igneous rocks. a. Phaneritic rocks with more than 10% (quartz + feldspar + feldspathoids). After IUGS. (Foid) Monzodiorite 60 60 (Foid)olites F Qtz. Diorite/ Qtz. Gabbro 5 Diorite/Gabbro/ 90 Anorthosite P 10 (Foid)-bearing Diorite/Gabbro Classification of Igneous Rocks Plagioclase Anorthosite Figure 2-2. A classification of the phaneritic igneous rocks. b. Gabbroic rocks. c. Ultramafic rocks. After IUGS. lite cto Tro Ga bb ro 90 Olivine gabbro Olivine Dunite 90 Peridotites Plagioclase-bearing ultramafic rocks Pyroxene Lherzolite Olivine (b) 40 Pyroxenites Olivine Websterite Orthopyroxenite 10 (c) 10 Orthopyroxene Websterite Clinopyroxenite Clinopyroxene Q Classification of Igneous Rocks 60 60 Rhyolite Dacite 20 20 Trachyte Latite 35 A 10 (foid)-bearing Trachyte Andesite/Basalt 65 (foid)-bearing Latite Phonolite (foid)-bearing Andesite/Basalt 10 Tephrite Figure 2-3. A classification and nomenclature of volcanic rocks. After IUGS. 60 60 (Foid)ites F P Chemical composition Analytical tools • Using electromagnetic waves – Excitation of the sample • X Rays, Electron beam, etc. – Detection • Optical, X-rays • Using mass spectrometry – Ion generation • Plasma, filament, laser – Detection • Mass spec The electromagnetic spectrum All electromagnetic waves travel at the speed of light (3 x 108 ms-1) and are discussed in terms of wavelength and frequency Spectrometry Emitted radiation Energy Source Emission Detector Absorbed radiation Sample Output with emission peak Absorption Detector Output with absorption trough The K emission spectrum of copper X-ray spectrum of an olivine Major and trace elements • Major elements – Form main minerals – Major elements composition tied to mineralogy – Classicaly expressed as wt.% oxydes – O and Si always the most abundant – Relatively narrow range of varation (ex. SiO2: 45—75% in most rocks) A typical rock analysis Wt. % Oxides to Atom % Conversion Oxide Wt. % M ol Wt. Atom prop Atom % SiO2 49.20 60.09 0.82 12.25 TiO2 1.84 95.90 0.02 0.29 Al2O3 15.74 101.96 0.31 4.62 Fe2O3 FeO MnO MgO CaO Na2O 3.79 7.13 0.20 6.73 9.47 2.91 159.70 0.05 71.85 0.10 70.94 0.00 40.31 0.17 56.08 0.17 61.98 0.09 0.71 1.48 0.04 2.50 2.53 1.40 K 2O 1.10 94.20 0.02 0.35 H2O+ (O) Total 0.95 18.02 0.11 1.58 72.26 100.00 4.83 99.06 6.69 Common types of magma Classification of Igneous Rocks Phonolite 13 Tephriphonolite Wt.% Na2O+K2O 11 9 Phonotephrite (Foid)ite Trachyte Trachy- Trachydacite andesite Rhyolite Basaltic trachyTephrite Basanite Trachy- andesite 7 basalt 5 Dacite 3 Basalt Basaltic Andesite Andesite Picrobasalt 1 37 41 ULTRABASIC 45 45 49 BASIC 53 57 61 52 INTERMEDIATE 65 63 69 73 77 ACIDIC wt% SiO2 Figure 2-4. A chemical classification of volcanics based on total alkalis vs. silica. After Le Bas et al. (1986) J. Petrol., 27, 745-750. Oxford University Press. Major and trace elements (cont.) • Trace elements – Substitute for other ions in minerals – Loosely tied to mineraogy – Expressed as ppm (1% = 10000 ppm) – Abundances vary greatly from < 1 ppm (ex. PGE) to > 1000 ppm (Sr, Ba…) – A given element shows variations of several orders of magnitude between different rocks Major elements • « Differenciation trends » • Magmatic series 22 10 Bivariate (x-y) diagrams Al2O3 MgO 17 5 0 12 15 FeO* 10 10 5 Harker diagram for Crater Lake CaO 5 0 0 4 6 3 Na2O 4 2 2 0 45 1 0 50 55 60 SiO2 65 70 75 45 50 55 60 SiO2 65 70 75 K2O Alkali vs. Silica diagram for Hawaiian volcanics: Seems to be two distinct groupings: alkaline and subalkaline 12 10 Alkaline 8 6 4 2 Subalkaline 35 40 45 50 %SiO 55 60 65 AFM diagram: can further subdivide the subalkaline magma series into a tholeiitic and a calc-alkaline series Figure 8-14. AFM diagram showing the distinction between selected tholeiitic rocks from Iceland, the MidAtlantic Ridge, the Columbia River Basalts, and Hawaii (solid circles) plus the calc-alkaline rocks of the Cascade volcanics (open circles). From Irving and Baragar (1971). After Irvine and Baragar (1971). Can. J. Earth Sci., 8, 523-548. Tholeiitic B-A A D R Calc-alkaline biotite muscovite cordierite andalusite garnet pyroxene hornblende biotite aegirine riebeckite arfvedsonite CaO CaO moles CaO K2O K2O Al2O3 K2O Na2O Peraluminous Al2O3 Al2O3 Na2O Metaluminous Na2O Peralkaline Figure 18-2. Alumina saturation classes based on the molar proportions of Al2O3/(CaO+Na2O+K2O) (“A/CNK”) after Shand (1927). Common non-quartzo-feldspathic minerals for each type are included. After Clarke (1992). Granitoid Rocks. Chapman Hall. Alkaline Calc-alkaline Tholeitic Series Alkaline Subalkaline Calcalkaline Tholeitic Alkali content High Fe-Mg Al Fe-rich Metaluminous to peralkaline Low to moderate Mg-rich Metaluminous to peraluminous Low Fe-rich Metaluminous A world-wide survey suggests that there may be some important differences between the three series Characteristic Plate Margin Series Convergent Divergent Alkaline yes Tholeiitic yes yes Calc-alkaline yes Within Plate Oceanic Continental yes yes yes yes After Wilson (1989). Igneous Petrogenesis. Unwin Hyman - Kluwer Trace elements • Substitutions and Kd • Spidergrams Selective affinities Fe2+ Mg2+ Ni2+ Compatible (right size & charge) Au3+ Ag3+ Fe2+ Mg2+ Incompatible (size/charge does not match) • Partition coefficient Kd = Cs/Cl • Compatible, incompatible (relative to a mineral) • Bulk repartition coefficient D = S Kd X i i Compatibility depends on minerals and melts involved. Which are incompatible? Why? Rb Sr Ba Ni Cr La Ce Nd Sm Eu Dy Er Yb Lu Rare Earth Elements Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks Olivine 0.010 0.014 0.010 14 0.70 0.007 0.006 0.006 0.007 0.007 0.013 0.026 0.049 0.045 Opx 0.022 0.040 0.013 5 10 0.03 0.02 0.03 0.05 0.05 0.15 0.23 0.34 0.42 Data from Rollinson (1993). Cpx Garnet 0.031 0.042 0.060 0.012 0.026 0.023 7 0.955 34 1.345 0.056 0.001 0.092 0.007 0.230 0.026 0.445 0.102 0.474 0.243 0.582 1.940 0.583 4.700 0.542 6.167 0.506 6.950 Plag Amph Magnetite 0.071 0.29 1.830 0.46 0.23 0.42 0.01 6.8 29 0.01 2.00 7.4 0.148 0.544 2 0.082 0.843 2 0.055 1.340 2 0.039 1.804 1 0.1/1.5* 1.557 1 0.023 2.024 1 0.020 1.740 1.5 0.023 1.642 1.4 0.019 1.563 * Eu3+/Eu2+ Italics are estimated • Calculate DYb for… – A lherzolite (80% Ol, 10% Opx, 10%Cpx) – A Grt-bearing Lherzolite (70% Ol, 10% OpxCpx-Gt) • Calculate DSr for… – A Cpx-Plag cumulate (50/50) – A Cpx-Opx cumulate (50/50) • How will the residual liquid evolve? Fingerprinting specific minerals: • Ni strongly fractionated olivine > pyroxene • Cr and Sc pyroxenes » olivine • Ni/Cr or Ni/Sc can distinguish the effects of olivine and augite in a partial melt or a suite of rocks produced by fractional crystallization Rb Sr Ba Ni Cr La Ce nts Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks Olivine 0.010 0.014 0.010 14 0.70 0.007 0.006 Opx 0.022 0.040 0.013 5 10 0.03 0.02 Cpx Garnet 0.031 0.042 0.060 0.012 0.026 0.023 7 0.955 34 1.345 0.056 0.001 0.092 0.007 Plag Amph Magnetite 0.071 0.29 1.830 0.46 0.23 0.42 0.01 6.8 29 0.01 2.00 7.4 0.148 0.544 2 0.082 0.843 2 Concentration of REE in a sample Chondrites Contrasted REE patterns Granites Basalts Multi-elements diagrams Normalized to the PRImitive Mantle (close to chondrites) (Wood version) A famous “anomaly”: Eu Granites from the Cape Granite Suite Darling-Vredenburg area Kd’s for plagioclase • REEs are normally 3+ (La3+, etc.) • Eu can be Eu3+ or Eu2+ • Eu2+ strongly compatible Reducing (Eu2+) Oxydizing (Eu3+)