Download PRT3202 STATISTICAL TABLE AND FORMULA SHEET 1. BASIC

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PRT3202
STATISTICAL TABLE AND FORMULA SHEET
1.
BASIC STATS
 xi
Mean:
x
Variance:
  xi  x 
s2 
Standard deviation (SD):
s  s2
Range:
xmax  xmin
2.
n
2
n 1
PROBABILITIES
Law of complement:
P( A)  1  P( A)
Addition law:
P( AUB)  P( A)  P( B)  P( AB)
Conditional probability:
P( AB)  P( B) P( A | B)
Total rule of probability:
P( A)  P( A | B) P( B)  P( A | B) P( B)
Bayes Theorem:
P( B | A) 
3.
P( A | B) P( B)
P( A | B) P( B)  P( A | B) P( B)
COMBINATIONS
Total no. of combinations (choose r from N):
N
N!
N  ( N  1)  ...  ( N  r  1)

 
r  (r  1)  ...  2 1
 r  r !( N  r )!
1
4.
NORMAL DISTRIBUTION
x = sample mean;  = pop. mean;  = pop. SD; n = sample size
4.1.
One-sample
Mean of sampling distibution: x  

SD of sampling distribution:
x 
Confidence interval (CI):
CI  x  z x (Read Table Z for the z value)
Hypothesis testing:
z
4.2.
n
x
x
Two-sample (independent)
xi = sample i mean; i = pop. i mean; i = pop. i SD; ni = sample size i
12  22
SD of sampling distribution:
 x x 
Confidence interval (CI):
CI  x1  x2  z x  x
Hypothesis testing:
z
1
2
n1


n2
1
2
(Read Table Z for the z value)
 x1  x2    1  2 
 x x
1
5.

2
t DISTRIBUTION
x = sample mean;  = pop. mean; s = sample SD; n = sample size
2
5.1.
One-sample
s
n
SD of sampling distribution:
sx 
Degrees of freedom:
df = n – 1
Confidence interval (CI):
CI  x  ts x (Read Table t for the t value)
Hypothesis testing:
t
5.2.
x
sx
Two-sample (independent)
xi = sample i mean; i = pop. i mean; i = pop. i SD; si = sample i SD; ni = sample size i
SD of sampling distribution:
sx  x
1
2

1 1

s p
n1 n2


 s12 s22
 n n
1
2

both pop. variance unknown but equal
both pop. variance unknown and unequal
 n1  1 s12   n2  1 s22
sp 
n1  n2  2
Degrees of freedom:
 n1  n2  2

2
  s12 s22 
   
n1 n2 

df   
2
2
  s2 
 s22 
1
 
  
  n1 
 n2 
 n 1  n 1
 1
2
Confidence interval (CI):
CI  x1  x2  ts x  x


1
3
2
both pop. variance unknown but equal
both pop. variance unknown and unequal
(Read Table t for the t value)
Hypothesis testing:
t
 x1  x2    1  2 
sx  x
1
5.3.
2
Two-sample (dependent/paired)
 d = mean of the paired differences for the population; n = no. of paired samples
d
Mean of paired differences for the sample:
d
SD of paired differences for the sample:
sd 
n
sd
n
d
sd 
2
 d 

n 1
2
n
Degrees of freedom:
df = n – 1
Confidence interval (CI):
CI  d  tsd (Read Table t for the t value)
Hypothesis testing:
t
6.
d  d
sd
CORRELATION AND LINEAR REGRESSION
Correlation coefficient:
r
S xy
S xx S yy
4



   x2   n 

 y
S xx   x  x
S yy   y  y
Simple linear regression equation:
Coefficient of determination:
Residual sum of squares:
x
2
2
2
S xy
S xx
b0  y  b1 x
;
R2 = r 2
SSE  S yy 
5
2
S xy
S xx
n
2
 y

y = b0 + b1x
b1 
  x   y 

S xy   x  x y  y   xy 
n
2
Related documents