Download Some harder examples of subsidiary angle form in trigonometry Yue

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Some harder examples of subsidiary angle form in trigonometry
Yue Kwok Choy
1.
1 + sin θ
3 − cos θ
Find the maximum and minimum of
Solution Let
y=
1 + sin θ
.
3 − cos θ
3y – y cos θ = 1 + sin θ
sin θ + y cos θ = 3y – 1
1
y
3y − 1
sin θ +
cos θ =
2
2
1+ y
1+ y
1+ y2
1
cos α =
Let
1+ y
2
sin α =
,
sin (θ − α ) =
Since
y
1+ y2
sin θ cos α + cos θ sin α =
(1) becomes,
…. (1)
3y − 1
1+ y2
3y − 1
(☺ subsidiary angle form in L.H.S.)
1 + y2
sin (θ − α ) ≤ 1 , therefore
3y − 1
1 + y2
≤1
(3y − 1)2 ≤ 1 + y 2
9y2 – 6y + 1 ≤ 1 + y2
8y2 – 6y ≤ 0
y(4y – 3) ≤ 0
∴
0≤y≤
∴
Min. of
Note 1.
3
4
or
0≤
1 + sin θ 3
≤
.
3 − cos θ 4
1 + sin θ
= 0,
3 − cos θ
Max. of
If you are given to prove : 0 ≤
Solution
3
1 + sin θ
=
.
3 − cos θ
4
1 + sin θ 3
≤
3 − cos θ 4
1 + sin θ ≥ 0 and 3 – cos θ ≥ 3 – 1 > 0 ⇒ 0 ≤
Also, 4 sin θ + 3 cos θ = 5 sin (θ + α ) ≤ 5
∴ 4 + 4 sin θ ≤ 9 –3 cos θ
As
2.
1 + sin θ
3 − cos θ
, where
 3
α = tan −1   .
 4
⇒ 4(1 + sin θ) ≤ 3(3 – cos θ)
3 – cos θ > 0 , we have
1 + sin θ 3
≤
.
3 − cos θ 4
∴
0≤
1 + sin θ 3
≤
3 − cos θ 4
This is also a good question of application of differentiation in Calculus. ☺
1
2.
Solve :
8 cos x =
3
1
+
sin x cos x
Solution
Multiply the given equation by sin x cos x, we have:
8 sin x cos 2 x = 3 cos x + sin x
3
1
cos x + sin x
2
2
2 sin 2 x cos x =
sin 3x + sin x =
sin 3x =
1
3
sin x +
cos x
2
2
3
1
cos x − sin x
2
2
π
π
sin 3x = sin cos x − cos sin x
3
3
π

sin 3x = sin  − x 
3

∴
π

3x = 2nπ +  − x 
3

∴
x=
(☺ subsidiary angle form in R.H.S.)
1
π
nπ +
2
12
or
π

3x = 2nπ + π −  − x  , where n is an integer.
3

or
x = nπ +
π
3
, where n is an integer.
For the roots above , we check that sin x cos x ≠ 0 and they are roots of the given equation .
3.
Solve :
sin (π cos x ) = cos(π sin x )
Solution
sin (π cos x ) = cos(π sin x )
π

sin (π cos x ) = sin  − (π sin x )
2

∴
π

π cos x = 2nπ +  − (π sin x )
2

cos x ± sin x = 2n +
Now, since
∴
1
2
or
π

π cos x = 2nπ + π −  − (π sin x ) , where
2

n is an integer.
, where n is an integer.
π

cos x ± sin x = 2 cos x ±  ≤ 2
4

(☺ subsidiary angle form)
The only value for n is 0 .
π 1

2 cos x ±  =
4 2

The equation becomes :
x±
∴
or
π
2
= 2kπ ± cos −1
4
4
1
2

x =  2k ±  π ± cos −1
4
4

π
2

cos x ±  =
4
4

(use k here because n is used once)
,where
k is an integer.
2
4.
(a)
Given that
k is a constant, show that
π

π

y = sin  − x  + k cos − x 
2

3

can be expressed in the form y = r sin (x + α) , where
(b) What is the value of
α=
k when
2
π ?
3
r>0.
Plot its graph for this value of
α.
Solution
(a)
π
π
π

π



y = sin  − x  + k cos − x  = cos x + k  cos cos x + sin sin x 
3
3
2

3



=
=
3
 k
k sin x + 1 +  cos x
2
 2

3 2
k2 
3k
k+2
k + 1 + k + 
sin x +
cos x 
2
2
4
4  2 k + k +1
2 k + k +1

= k 2 + k + 1 sin (x + α )
where
(b) When
α=
(☺ subsidiary form)
k2 + k +1
r=
2
π,
3
tan
and
tan α =
k+2
3k
.
2
k+2
π=− 3=
.
3
3k
∴
–3k = k + 2,
k =−
1
2
2
Then
2 
3 
2 
 1  1

y =  −  +  −  + 1 sin  x + π  =
sin  x + π 
3  2
3 
 2  2


Graph :
y
2
1
−4
3π
−π
−2
3π
− π3
O
π
3
2π
3
π
4π
3
x
−1
−2
Exercise
1.
Find the relative maximum and relative minimum of
(Answer : relative maximum =
2.
Sketch the graph :
2 cos θ + 1
.
2 cos θ − 1
1
, relative minimum = 3 )
3
y = sin x + 3 cos x .
3
Related documents