Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Some harder examples of subsidiary angle form in trigonometry Yue Kwok Choy 1. 1 + sin θ 3 − cos θ Find the maximum and minimum of Solution Let y= 1 + sin θ . 3 − cos θ 3y – y cos θ = 1 + sin θ sin θ + y cos θ = 3y – 1 1 y 3y − 1 sin θ + cos θ = 2 2 1+ y 1+ y 1+ y2 1 cos α = Let 1+ y 2 sin α = , sin (θ − α ) = Since y 1+ y2 sin θ cos α + cos θ sin α = (1) becomes, …. (1) 3y − 1 1+ y2 3y − 1 (☺ subsidiary angle form in L.H.S.) 1 + y2 sin (θ − α ) ≤ 1 , therefore 3y − 1 1 + y2 ≤1 (3y − 1)2 ≤ 1 + y 2 9y2 – 6y + 1 ≤ 1 + y2 8y2 – 6y ≤ 0 y(4y – 3) ≤ 0 ∴ 0≤y≤ ∴ Min. of Note 1. 3 4 or 0≤ 1 + sin θ 3 ≤ . 3 − cos θ 4 1 + sin θ = 0, 3 − cos θ Max. of If you are given to prove : 0 ≤ Solution 3 1 + sin θ = . 3 − cos θ 4 1 + sin θ 3 ≤ 3 − cos θ 4 1 + sin θ ≥ 0 and 3 – cos θ ≥ 3 – 1 > 0 ⇒ 0 ≤ Also, 4 sin θ + 3 cos θ = 5 sin (θ + α ) ≤ 5 ∴ 4 + 4 sin θ ≤ 9 –3 cos θ As 2. 1 + sin θ 3 − cos θ , where 3 α = tan −1 . 4 ⇒ 4(1 + sin θ) ≤ 3(3 – cos θ) 3 – cos θ > 0 , we have 1 + sin θ 3 ≤ . 3 − cos θ 4 ∴ 0≤ 1 + sin θ 3 ≤ 3 − cos θ 4 This is also a good question of application of differentiation in Calculus. ☺ 1 2. Solve : 8 cos x = 3 1 + sin x cos x Solution Multiply the given equation by sin x cos x, we have: 8 sin x cos 2 x = 3 cos x + sin x 3 1 cos x + sin x 2 2 2 sin 2 x cos x = sin 3x + sin x = sin 3x = 1 3 sin x + cos x 2 2 3 1 cos x − sin x 2 2 π π sin 3x = sin cos x − cos sin x 3 3 π sin 3x = sin − x 3 ∴ π 3x = 2nπ + − x 3 ∴ x= (☺ subsidiary angle form in R.H.S.) 1 π nπ + 2 12 or π 3x = 2nπ + π − − x , where n is an integer. 3 or x = nπ + π 3 , where n is an integer. For the roots above , we check that sin x cos x ≠ 0 and they are roots of the given equation . 3. Solve : sin (π cos x ) = cos(π sin x ) Solution sin (π cos x ) = cos(π sin x ) π sin (π cos x ) = sin − (π sin x ) 2 ∴ π π cos x = 2nπ + − (π sin x ) 2 cos x ± sin x = 2n + Now, since ∴ 1 2 or π π cos x = 2nπ + π − − (π sin x ) , where 2 n is an integer. , where n is an integer. π cos x ± sin x = 2 cos x ± ≤ 2 4 (☺ subsidiary angle form) The only value for n is 0 . π 1 2 cos x ± = 4 2 The equation becomes : x± ∴ or π 2 = 2kπ ± cos −1 4 4 1 2 x = 2k ± π ± cos −1 4 4 π 2 cos x ± = 4 4 (use k here because n is used once) ,where k is an integer. 2 4. (a) Given that k is a constant, show that π π y = sin − x + k cos − x 2 3 can be expressed in the form y = r sin (x + α) , where (b) What is the value of α= k when 2 π ? 3 r>0. Plot its graph for this value of α. Solution (a) π π π π y = sin − x + k cos − x = cos x + k cos cos x + sin sin x 3 3 2 3 = = 3 k k sin x + 1 + cos x 2 2 3 2 k2 3k k+2 k + 1 + k + sin x + cos x 2 2 4 4 2 k + k +1 2 k + k +1 = k 2 + k + 1 sin (x + α ) where (b) When α= (☺ subsidiary form) k2 + k +1 r= 2 π, 3 tan and tan α = k+2 3k . 2 k+2 π=− 3= . 3 3k ∴ –3k = k + 2, k =− 1 2 2 Then 2 3 2 1 1 y = − + − + 1 sin x + π = sin x + π 3 2 3 2 2 Graph : y 2 1 −4 3π −π −2 3π − π3 O π 3 2π 3 π 4π 3 x −1 −2 Exercise 1. Find the relative maximum and relative minimum of (Answer : relative maximum = 2. Sketch the graph : 2 cos θ + 1 . 2 cos θ − 1 1 , relative minimum = 3 ) 3 y = sin x + 3 cos x . 3