Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Graphs of Trigonometric Functions • This chapter focuses on using graphs of sinθ, cosθ and tanθ • We will be seeing how to work out values of these from the graphs • We are also going to look at transformations of these graphs Graphs of Trigonometric Functions y 1 You need to be able to recognise the graphs of sinθ, cosθ and tanθ -360º -270º -180º -90º You will have seen all these graphs on your GCSE The Tan graph has lines called asymptotes. These are points the graph approaches but never reaches (90º, 270º etc…) Period (length of wave) = 360º for Sin and Cos, and 180º for Tan 0 90º 180º 270º θ 360º -1 y The key points to remember are the peaks/troughs of each, and the points of intersection The Cos graph is the same as the Sin graph, but shifted along (it starts at 1 instead of 0) y = sinθ y = cosθ 1 -360º -270º -180º -90º 0 90º 180º 270º θ 360º -1 y = tanθ 1 -360º -270º -180º -90º 0 90º 180º 270º θ 360º -1 8C Graphs of Trigonometric Functions y You need to be able to recognise the graphs of sinθ, cosθ and tanθ y = sinθ 1 -2π -360º -3π -270º 2 -π -180º -π -90º 2 0 -1 These are the same graphs, but with radians instead… π 90º 2 π 180º y -2π -360º -3π -270º 2 -π -90º 2 0 -1 θ 360º 2π y = cosθ 1 -π -180º 3π 270º 2 π 90º 2 π 180º 3π 270º 2 θ 360º 2π y = tanθ 1 -2π -360º -3π -270º 2 -π -180º -π -90º 2 0 -1 π 90º 2 π 180º 3π 270º 2 θ 360º 2π 8C Graphs of Trigonometric Functions You need to be able to recognise the graphs of sinθ, cosθ and tanθ You need to be able to work out larger values of sin, cos and tan as acute angles (0º - 90º) y = sinθ y 1 -40 -40 50 0 130 θ 90º 180º 270º 360º -1 Write sin 130º as sine of an acute angle (sometimes asked as a ‘trigonometric ratio’) Sin 130º = Sin 50º Draw a sketch of the graph Mark on 130º Using the fact that the graph has symmetry, find an acute value of θ which has the same value as sin 130 8C Graphs of Trigonometric Functions y = cosθ y You need to be able to recognise the graphs of sinθ, cosθ and tanθ You need to be able to work out larger values of sin, cos and tan as acute angles (0º - 90º) +60 -60 +30 -270º -180º +30 -90º -120 1 +60 60 0 θ 90º 180º 270º -1 Write cos (-120)º as cos of an acute angle Cos(-120)º = -Cos 60º Draw a sketch of the graph Mark on -120º Using the fact that the graph has symmetry, find an acute value of θ which has the same numerical value as cos (-120) The value you find here will have the same digits in it, but will be multiplied by -1 8C Graphs of Trigonometric Functions You need to be able to recognise the graphs of sinθ, cosθ and tanθ y = tanθ 1 0 You need to be able to work out larger values of sin, cos and tan as acute angles (0º - 90º) -1 1 3 +1 3 4 3 π 2 π +1 3 θ 3π 2 2π Write tan 4π/3 as tan of an acute angle Tan 4π/ 3 = Tan π/3 Draw a sketch of the graph Mark on 4π/3 Using the fact that the graph has symmetry, find an acute value of θ which has the same numerical value as tan 4π/3 8C Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios 60˚ 2 Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… 60˚ Opp Sinθ = Hyp 1 Sin30 = 2 √3 Sin60 = 2 60˚ 2 We can use an Equilateral Triangle with sides of length 2 to show this. Using Pythagoras, the missing side in the right angled triangle is √3 (Square root of 22-12) 2 Hyp 2 30˚ √3 Opp 60˚ Opp 1 8D Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios 60˚ 2 Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… 60˚ Adj Cosθ = Hyp √3 Cos30 = 2 Cos60 = 1 2 60˚ 2 We can use an Equilateral Triangle with sides of length 2 to show this. Using Pythagoras, the missing side in the right angled triangle is √3 (Square root of 22-12) 2 Hyp 2 30˚ √3 Adj 60˚ Adj 1 8D Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… 60˚ 2 60˚ Opp Tanθ = Adj 1 √3 Tan30 = √3 = 3 Tan60 = √3 60˚ 2 We can use an Equilateral Triangle with sides of length 2 to show this. Using Pythagoras, the missing side in the right angled triangle is √3 (Square root of 22-12) 2 2 30˚ Adj √3 Opp 60˚ Opp Adj 1 8D Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… We can also do a similar demonstration with a right-angled Isosceles triangle, with the equal sides being of length 1 unit. Using Pythagoras’ Theorem, the hypotenuse will be of length √2 (Square root of 12 + 12) Hyp Opp 1 √2 45˚ 1 Opp Sinθ = Hyp 1 Sin45 = √2 = √2 2 8D Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… We can also do a similar demonstration with a right-angled Isosceles triangle, with the equal sides being of length 1 unit. Using Pythagoras’ Theorem, the hypotenuse will be of length √2 (Square root of 12 + 12) Hyp 1 √2 45˚ 1 Adj Adj Cosθ = Hyp 1 Cos45 = √2 = √2 2 8D Graphs of Trigonometric Functions You need to be able to find the exact values of some Trigonometrical Ratios Some values of Sin, Cos or Tan can be written using fractions, surds, or combinations of both… We can also do a similar demonstration with a right-angled Isosceles triangle, with the equal sides being of length 1 unit. Using Pythagoras’ Theorem, the hypotenuse will be of length √2 (Square root of 12 + 12) Opp 1 √2 45˚ 1 Adj Opp Tanθ = Adj 1 Tan45 = 1 = 1 8D Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them Transformation type 1 y sin y a sin This stretches the graph vertically by a factor ‘a’. y 3sin 1 y sin 2 Y values 3 times as big Y values halved “Multiplying sinθ by a number will affect the y value directly” y = sinθ 1 0 90º 180º 270º θ 360º -1 y 3 y = 3sinθ 0 90º 180º 270º θ 360º -3 y = ½sinθ y 0.5 0 -0.5 90º 180º 270º θ 360º 8F Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them Transformation type 1 y sin y sin 1 0 Reflection in the x axis y sin( ) (You get the same y values for the reversed x value. -90 gives the result 90 would have) 180º y 270º θ 360º y = -sinθ 1 0 90º 180º 270º θ 360º -1 (all the y values will ‘swap sign’) Reflection in the y axis 90º -1 y a sin This stretches the graph vertically by a factor ‘a’. y = sinθ y y = sin(-θ) 1 0 -1 90º 180º 270º θ 360º 8F Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them Transformation type 1 y cos y cos 1 0 Reflection in the x axis 90º 180º y y cos( ) θ 360º y = -cosθ 1 0 90º 180º 270º θ 360º -1 y Reflection in the y axis 270º -1 y a cos This stretches the graph vertically by a factor ‘a’. y = cosθ y = cos(-θ) 1 0 -1 90º 180º 270º θ 360º 8F Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them Transformation type 2 y sin y sin a This shifts the graph vertically ‘a’ units. It is important to note that the ‘a’ is added on AFTER doing ‘sinθ’ y sin 1 Y values all increase by 1 y 2 sin Y values all decrease by 2 “Adding an amount onto sinθ is a vertical shift” y = sinθ 1 0 90º 180º 270º θ 360º -1 y y = sinθ + 1 1 0 90º 180º 270º θ 360º -1 y y = -2 + sinθ -1 -2 θ -3 8F Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them Transformation type 3 y sin y sin( a) This shifts the graph horizontally ‘-a’ units. NOTE: The ‘a’ is added to θ before we work out the sine value… Y takes the same set of values, for values of θ y sin( 90) that are 90 less than before Y takes the same set of y sin( 30) values, for values of θ that are 30 more than before “Adding/Subtracting an amount from the bracket is a horizontal shift” y = sinθ 1 0 90º 180º 270º θ 360º -1 y 90 y = sin(θ + 90) 1 0 90º 180º 270º θ 360º -1 y 30 y = sin(θ – 30) 1 0 90º 180º 270º θ 360º -1 8F Graphs of Trigonometric Functions y You need to be able to recognise transformations of graphs, and sketch them 1 0 90º 180º 270º θ 360º -1 Transformation type 4 y sin y = sinθ y sin(a ) This stretches the graph horizontally by a factor ‘1/a’ y sin(2 ) Same set of Y values, for half the θ values y sin 3 Same set of y values, for triple the θ values “Multiplying or dividing θ in the bracket is a horizontal stretch/squash” y y = sin2θ 1 0 90º 180º 270º θ 360º -1 y y = sin(θ/3) 1 0 270º 540º 810º θ 1080º -1 8F Graphs of Trigonometric Functions y You need to be able to answer questions with unknowns in The graph shows the Function: (90, 1.5) y = sinθ + k 1 0 90º 180º 270º θ 360º -1 f(x) = Sinθ + k a) Write down the value of k 0.5 (Graph 0.5 units higher) b) What is the smallest positive value of θ that gives a minimum point? 270˚ c) What is the value of Sinθ at this point? -0.5 8F Graphs of Trigonometric Functions y You need to be able to answer questions with unknowns in The graph shows the Function: f(x) = Cos(θ + k) a) Write down the value of k 20 (Graph moved 20 units left) f(x) = Cos(θ + 20) b) What is the value of θ at x? x = 250˚ c) What are the coordinates of the minimum? (160, -1) d) What is the value of Cosθ at y? y = cos(θ+k) 1 y 0 70º 250º xº θ -1 f(x) = Cos(θ + k) f(x) = Cos(θ + 20) f(x) = Cos(20) f(x) = 0.94 (2dp) We know k On the y axis, θ = 0. Work out the answer! 8F Summary • We have been reminded of the graphs for sine, cosine and tan • We have looked at finding equivalent values on these graphs • We have also looked at various graph transformations