Download Slide 5.1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.1
Fundamental
Identities
Copyright © 2011 Pearson, Inc.
What you’ll learn about







Identities
Basic Trigonometric Identities
Pythagorean Identities
Cofunction Identities
Odd-Even Identities
Simplifying Trigonometric Expressions
Solving Trigonometric Equations
… and why
Identities are important when working with trigonometric
functions in calculus.
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 2
Basic Trigonometric Identities
Reciprocal Identites
1
1
csc 
sec 
sin 
cos
1
cot  
tan 
1
sin  
csc
1
tan  
cot 
1
cos 
sec
Quotient Identites
sin 
cos
tan  
cot 
cos
tan 
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 3
Pythagorean Identities
cos   sin   1
1  tan   sec 
cot   1  csc 
2
2
2
2
Copyright © 2011 Pearson, Inc.
2
2
Slide 5.1 - 4
Example Using Identities
Find sin and cos if tan   3 and cos  0.
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 5
Example Using Identities
Find sin and cos if tan   3 and cos  0.
1  tan 2   sec 2 
To find sin , use tan   3
1  9  sec 2 
and cos  1 / 10.
sin 
tan  
cos
sin   cos tan 
sec   10
cos  1 / 10


sin   1 / 10 3
sin   3 / 10
Therefore, cos  1 / 10 and sin  3 / 10
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 6
Cofunction Identities
y
Angle A: sin A 
r
x
cos A 
r
x
Angle B: sin B 
r
y
cos B 
r
Copyright © 2011 Pearson, Inc.
y
tan A 
x
x
cot A 
y
x
tan B 
y
y
cot B 
x
r
sec A 
x
r
csc A 
y
r
sec B 
y
r
csc B 
x
Slide 5.1 - 7
Cofunction Identities


sin      cos 
2



tan      cot 
2



sec      csc 
2

Copyright © 2011 Pearson, Inc.


cos      sin 
2



cot      tan 
2



csc      sec 
2

Slide 5.1 - 8
Even-Odd Identities
sin(x)   sin x
csc(x)   csc x
Copyright © 2011 Pearson, Inc.
cos(x)  cos x
sec(x)  sec x
tan(x)   tan x
cot(x)   cot x
Slide 5.1 - 9
Example Simplifying by Factoring
and Using Identities
Simplify the expression cos 3 x  cos xsin2 x.
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 10
Example Simplifying by Factoring
and Using Identities
Simplify the expression cos 3 x  cos xsin2 x.
cos 3 x  cos x sin 2 x  cos x(cos2 x  sin 2 x)
 cos x(1)
Pythagorean Identity
 cos x
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 11
Example Simplifying by Expanding
and Using Identities
csc x -1csc x  1

Simplify the expression:
cos2 x
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 12
Example Simplifying by Expanding
and Using Identities
csc x  1csc x  1  csc 2 x  1
cos 2 x
Copyright © 2011 Pearson, Inc.
(a  b)(a  b)  a 2  b 2
cos 2 x
cot 2 x

Pythagorean Identity
2
cos x
cos 2 x
1
cos


cot  
2
2
sin x cos x
sin 
1

sin 2 x
 csc 2 x
Slide 5.1 - 13
Example Solving a Trigonometric
Equation
Find all values of x in the interval 0,2 
sin 3 x
that solve
 tan x.
cos x
Copyright © 2011 Pearson, Inc.
Slide 5.1 - 14
Example Solving a Trigonometric
Equation
3
sin x
 tan x
cos x
sin 3 x sin x

cos x cos x
3
sin x  sin x
Reject the posibility that cos 2 x  0
because it would make both
sides of the original equation
undefined. sin x  0 in the interval
0  x  2 when x  0 and x   .
sin 3 x  sin x  0
sin x(sin x  1)  0
2


sin x  0
or
2
sin
x
cos
x 0
 
Copyright © 2011 Pearson, Inc.
cos 2 x  0
Slide 5.1 - 15
Related documents