Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Interaction of X-rays with Matter and Imaging Gocha Khelashvili Assistant Research Professor of Physics Illinois Institute of Technology Research Physicist EXELAR Medical Corporation The Plan • • • • • • • X-ray Interactions with Matter Used at Imaging Energies Photoelectric Effect Coherent Scattering Incoherent Scattering Refraction Small- and Ultra-small Angle Scattering Radiography How does it work? Imaging Parameters and Sources of X-ray contrast Drawbacks of Radiography Diffraction Enhanced Imaging (DEI) How does it work? Imaging Parameters and Sources of X-ray contrast Drawbacks of DEI Multiple Image Radiography (MIR-Planar Mode) How does it work? Sources of X-ray contrast MIR parameters and images MIR Model Based on Discrete Scatterers Multiple scattering series approach and MIR transport equation Solution of MIR transport equation Imaging Parameters Laboratory DEI / MIR Machine Summary Photoelectric Effect M L Photoelectric Absorption K Fluorescent X-ray emission M L M L K h 0.1 MeV A K Z4 h 3 K (cm 2 /atom) K Thompson (Classical) Scattering d 1 2 r0 1 cos 2 d 2 ke2 15 where r0 2.817 10 m Classical electron radius 2 me c No energy loss by photon - No recoil by electron. Thompson (Classical) Scattering d 1 2 r0 1 cos 2 2 sin d 2 8 2 0 r0 66.525 1030 m2 3 Rayleigh Scattering (Coherent Scattering) 1 . Photons are scattered by bound electrons 2. Atoms are neither excited or ionized 3. Scattering from different parts of electron cloud - coherent scattering Rayleigh Scattering (Coherent Scattering) d 1 2 1 q 2 2 r0 1 cos F ( x, Z ) 2 sin where x sin = d 2 2 2 F ( x, Z ) F (q , Z ) (r ) exp iq r d 3r - atomic form factor where ( r ) ( x, y, z ) - total electron density sin qr 2 F (q, Z ) 4 (r ) r dr - for spherical symmetry qr 0 Z F ( x, Z ) F ( q , Z ) 0 | exp iq rn | 0 n 1 (atomic scattering factor, atomic structure factor) 0 - ground state WF calculated from Hartree-Fock theory R Z2 h 2 (cm 2 / atom) Compton Scattering (Incoherent Scattering) 1. Energy is transfered to electron 2. Electron recoils from collision 3. Electron considered at rest before collision (No bounding effects) 4. Electron deposits dose in the medium Compton Scattering (Incoherent Scattering) d 1 2 h h h 2 r0 sin - Klein-Nishina Cross Section d 2 h h h d 1 2 r0 1 cos 2 FKN d 2 2 2 2 1 cos 1 FKN 1 2 1 (1 cos ) 1 1 cos 1 cos h h (in MeV) 2 me c 0.511 Effects of Binding Energy in Compton (Incoherent) Scattering 1. Electrons are in constant motion in atoms (binding effect) 2. Electrons recoil after collision 3. Energy is transfered to electrons 4. X-ray photon looses part of its energy d inc d KN S x, Z d d S (q , Z ) F (q , Z ) and S (q , Z ) 2 0 S ( x, Z ) Z exp iq r 0 Z j 1 j S ( q , Z ) - incoherent scattering function Z S q , Z 0 | exp iq (rm rn ) | 0 F (q , Z ) m 1 n 1 2 Effects of Binding Energy in Compton (Incoherent) Scattering inc 1 1 cos2 FKN S ( x, Z ) 2 sin d 2 0 Radiography Setup h 10 KeV are absorbed by primary collimators Average eneregy of beam increases - "hard" x-rays penetrate deeper Radiography Setup and Imaging Principles x Radiology Setup Object Double Crystal Monochromator Si(333) z Incident X-ray beam Area Detector Attenuation Law I A ( x, y , z ) I 0 e ( x , y ) z Image Contrast Image 1 z ( x, y ) ln I A IA I A ( x, y , z ) I0 y Drawbacks of Radiography Incoherently Scattered Beam x x Detector Pixel Object Pixel Attenuated Beam y I R I A I Scat Image Contrast (by absorption) y 1 z ( x, y ) ln I A I Scat I A I Scat I A I Scat I0 DEI Setup and Imaging Principles x z DEI Setup Area Detector Object Double Crystal Monochromator Si(333) Analyzer Crystal Si(333) Incident X-ray beam y Formation of DE Images x Incoherently Scattered Beam is Blocked by Crystal Detector Pixel x B Object Pixel y Enhanced Attenuated Beam y Physics of DEI Pisano, Johnston(UNC); Sayers(NCSU); Zhong (BNL); Thomlinson (ESRF); Chapman(IIT) Low Angle Side High Angle Side Relative Intensity I/Io 1.00 0.80 0.60 0.40 0.20 0.00 -10 -5 0 5 10 Analyzer Angle (radians) Data from NSLS X27 Calculation of DEI Images D Low Angle Side High Angle Side 1.00 Relative Intensity I/Io 0.80 0.60 L B D 0.40 H B 0.20 2 0.00 -10 I L I R R L Z I R [ R L I R x, y -5 0 5 Analyzer Angle (rad) dR L Z ] d Z x, y R( L ) ( H ) R( H ) dR d I H I R R H Z I R [ R H ( L ) I H x, y R ( L ) I L x, y R ( H ) I L x, y dR d ( H ) I H x, y 2 10 I L x, y ddR ( H ) I H x, y ddR ( L ) dR d D dR d ( L ) - Absorption - Refraction dR H Z ] d Comparison - Conventional and DEI ACR - Phantom 610 - 054 Map Conventional DEI ACR Phantom (Gammex RMI - Model 156) - tumor-like masses, microcalsifications, cylindrical nylon fibrids 40-45 mm thick compressed breast. Conventional Radiography - Synchrotron at 18 keV. DEI image of ACR phantom - smallest calcifications Data from NSLS X27 Cancer in Breast Tissue Pisano, Johnston(UNC); Sayers(NCSU); Zhong (BNL); Thomlinson (ESRF); Chapman(IIT) Conventional DEI - Absorption BNL Sept 1997 DEI - Refraction Drawbacks of DEI Detector Pixel Object Pixel x x y y Experimental Evidence of Problems in DEI 18 keV x-ray beam -9.6 to 8.8 rad (0.8 rad) 1256 444 pixels image 50 m 50 m each pixel I ( , x, y ) I ( ) f ( , x, y)d I ( ) f ( , x, y) 0 0 I0 I0 R1 R2 g , x, y I 0 f , x, y RA M. Wernick et al "Multiple - Image Radiography" Phys. Med. Biol. 48 (2003) 3875 Experimental Results f ( ; x, y ) f ( ; x, y ) 600 Rod, off-center Background 600 400 400 200 200 -1 -1 -0.6 -0.2 0.2 0.6 -0.6 -0.2 0.2 0.6 1-5 x 10 1 -5 f ( ; x, y ) x 10 f ( ; x, y ) 600 600 Thick Paper Rod and Paper 400 400 200 200 -1 -1 -0.6 -0.2 0.2 0.6 1-5 x 10 -0.6 -0.2 0.2 M. Wernick et al "Multiple - Image Radiography" Phys. Med. Biol. 48 (2003) 3875 0.6 1-5 x 10 Refraction images Profiles no paper 1 MIR 0.8 MIR 0.6 0.4 DEI DEI thin paper DEI 0.2 thick paper 0 0 50 100 150 200 Position (pixels) M. Wernick et al "Multiple - Image Radiography" Phys. Med. Biol. 48 (2003) 3875 a( x, y ) ln T x, y I0 1 ln f , x, y d - Attenuation Image I 0 f , x, y R T ( x, y) I0 d - Refraction Image r ( x, y) w( x, y) r ( x, y) 2 f , x, y T x, y d - Ultra-Small Angle Scattering Image M. Wernick et al "Multiple - Image Radiography" Phys. Med. Biol. 48 (2003) 3875 Generalization to CT Reconstruction I A I 0e z I0 I A I 0 e ( 1 2 I0 1 2 3 4 z z N z z I A ( x, y, z ) I 0e 1z e 2z e 3z e 4z I 0e N n z n1 IA N p( x, y) ln n z ( x, y, z)dz I 0 n1 L r ( x, y) gradr ln n( x, y, z ) dz L grad ( x, y, z) dz r L w( x, y )? ? z N ) z Discrete Scatterer Model Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) Object Voxel - Scattering Centers - a , s , nsp - Nonscattering Medium , grad n Multiple Ultra-Small Angle Scattering • Radiation Transport Theory Approach I (r , sˆ ) I (r , , ) - Specific Intensity Radiation density of x-ray beam in at position r in the direction sˆ (sin cos ,sin sin ,cos ) ds ds - particles in ds volume d sˆ d p( s , s)- phase function - fraction of the radiation sˆ scattered from d sˆ into d sˆ . MIR Radiation Transfer Equation ext a s sˆ r I (r , sˆ ) n ext I (r , sˆ ) b (r , sˆ ) sˆ I (r , sˆ ) n ext 4 p(sˆ , sˆ)I (r , sˆ)d 4 Ultra-Small Angle Approximation d I ( z, , s ) s t I ( z, , s ) n ext I ( z, , s ) b ( z, , s ) I ( z, , s ) z ds n ext 4 p (s s)I ( z , , s)d 2 s r zk xi yj zk , t i j , s sin cos i sin sin j x y d 2 s dsx ds y b r ln n( x, y) n n n( x, y) n0 x y n0 nx x n y y x y General Solution 1 I ( z, , s ) d d q exp ( i is q ) exp ( ibq ib z ) z 2 (2 ) 2 1 2 2 exp (is n t ) z F0 ( z, , q ) K ( z , , q ) F0 ( , q ) I 0 ( , s ) exp(i is q )d 2 d 2 s n ext z K ( z , , q ) exp P(q z )dz 4 0 P(q ) p( s ) exp(is q )d 2 s Phase Function a a p( s , s) d 4 2 a 2 d 4 2 s 2 s d a2 d a 103 106 1 N 2 nsp 1 1 re 2 V 105 2 2 2 2 2 2 , s s s sin , d s dsx ds y sin d d d d ; x y 2 s d s 4 2 4 2 p( s , s) 2 p( s) 4 4W0 2 2 2 2 2 2 a d ext 4 s 4 s Phase Function Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) 2 p 2 2 | s | p ( s ) d s 2 p ( s ) d s p( s) 4 pW0 exp p s , 2 1 2 4 ln 1 2 2 2 | s | p ( s ) d s p(s)d 1 p 2 p 2 2 4 ln 1 2 s 1 p Plane Wave Solution Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) I 0 ( , s ) I 0δ( s ) I I ( z , , s ) 0 2 exp( ) exp iq ( s bz ) (2 ) ( W0 ) k exp(kq 2 / 4 p ) k! k 0 s W0 , ext ( n ext ) z and n ext z, exp iq (s bz ) exp(kq 2 / 4 p )d q 2 4 p k s bz ( s bz ) 2x ( s bz ) 2y 2 p 2 exp s bz , k d 2q Plane Wave Solution Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) I ( z, , s ) I0 exp( ) k 0 ( W0 )k p k k! p exp s bz k 2 if W0 n s z 0 ( ( n ext ) z and n ext z ) ext a s I ( z, , s ) I 0 exp( z)δ( s bz) Imaging Parameters Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) IT I ( z, , s )d 2 s I 0 exp n a z - Beer's Law 2 IT A( x, y, z ) ln I0 1 x ( x, y, z ) IT n a ( x, y, z ) ( x, y, x) z - Absorption Image 1 2 sx I ( z, , s )d s bx z; y ( x, y, z) IT 2 2 s I ( z , , s ) d s by z y 2 Refraction Image 1 w( x, y, z ) Ir 2 n ( x, y ) s ( x, y ) s bz I ( z, , s )d s z p 2 2 Ultra-Small Angle Scattering Image Experimental Conformation Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) Lucite container – wedge shaped. Polymethylmethacrylate (PMMA) microspheres in glycerin. Experimental Conformation Khelashvili, Brankov (IIT), Chapman (U.Sask), Anastasio, Yang (IIT), Zang (BNL), Wernick (IIT) labDEI System Morrison, Nesch, Torres, Khelashvili (IIT), Hasnah (U. Qatar) Chapman (U.Sask) X-ray Source Detector Analyzer Pre-mono & Mono Lab DEI System tissue images 1cm Morrison, Nesch, Torres, Khelashvili, Chapman (IIT) Muehleman (Rush Medical College) Human tissue image using prototype cartilage laboratory DEI system using Mo K bone (17.5keV) radiation. Image is of a section of a knee joint immersed in formalin showing cartilage. Summary • First reliable Theoretical Model of DEI – MIR has been developed. • Model can be used to simulate experiments starting from source, through crystals (this was known), through object (was unknown), through analyzer crystal (partially known – dynamical theory of diffraction – but crystal and beam specific calculations need to be done). • CT reconstructions – some steps are already taken in this direction – Miles N. Wernick et al “Preliminary study of multiple-image computed tomography” • CSRRI (IIT) / Nesch LLC – are developing in-lab research DEI instrument Acknowledgements Funded by NIH/NIAMS. L.D. Chapman (Anatomy and Cell Biology, University of Saskatchewan, Canada) J. Brankov, M. Wernick, Y. Yang, M. Anastasio (Biomed. Engineering, IIT) T. Morrison and I. Nesch (CSRRI, IIT) C. Muehleman (Department of Anatomy and Cell Biology, Rush Medical College)