Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The RNA World E. Westhof http://www-ibmc.u-strasbg.fr/upr9002/westhof/ Stabilization of Fossils of the hydrosphere stromatolites Decrease in the Organic matter Earth Number of From living organisms Formation Meteorite impacts 4.5 4.2 4.0 3.8 RNA WOLRD 3.6 3.4 (x 109 ans) Global overview of all life RNA World The RNA World • Origin of life / central dogma paradox • DNA needs proteins to replicate • Proteins coded for by DNA • RNA can be code and machinery • Selex, aptamers • RNAs are remnants • Ancient and Essential RNA, Parts O O H H N O Bases N N O N OH OH O O O O O O P O 5’ Sugar (ribose) O - O Phosphate P O - 3’ DNA = modified RNA O -O P O O O- P O H OH H H OH OH Thioredoxine (-SH)2 NADP+ NADPH + H+ O- RNA O O P Ribonucleoside triphosphates Ribonucleoside diphosphate réductase Thioredoxine -(S-S-) -O Base O O P O Base O H OH OH H H H Deoxyribonucleoside triphosphates DNA O3' O P O O3' O P P O5' O O3' O O5' O O5' Nucleic acids are negatively charged biopolymers ... 5!’ ADENINE (A) O O P O O O O P THYMINE (T) OH O O (Uracil) O O O P GUANINE (G) OH O O O O OH O O P O CYTOSINE (C) O O RNA O O P O O OH 3!’ Conformations of RNA •Primary structure of RNA similar to DNA •RNA, like DNA, can be single or double stranded, linear or circular. •Unlike DNA, RNA can exhibit different foldings •Different folds permit the RNAs to carry out specific functions in the cell H H H N N C Charge delocalization C H N N imine énamine H H O O C C N lactame (forme céto) N H H lactime (forme énol) N + N C C H Tautomeric forms H N N O C H N O H + N C Cytidine H H N H H H Uridine H H N O S O O pKa = 9,2 3 H N O H N S H H N N N N H H H N N H O N N O O H pKa = 2,1 H H H N H+ H N N 1 6 S N N pKa = 9,2 N H H N N H+ H N N N H H H H+ S N 7 N + N N S Guanosine H N pKa = 3,5 1 H H+ H N S H Protonation possibilities H + N H+ H N S H O Adénosine H N + N N pKa = 4,2 3 O H N S S H Guanine H Always N H O O 1 N N 6 N H H N H N N N H H S S Adénine H H H N N seen Never seen N N N N 6 1 H N N H H N N N N S S Uracile H H N H H H 4 3 O O O N N ou 2 O H N O H N O H N H S S S Cytosine H H H N 3 4 H N N H H N H H N N ou 2 O N H O N H O N H S S S H H H O N H3C N Modified bases have different … CH3 N H N N H H H N N N N N H S S 1-méthyladénine 7-méthylguanine O CH3 N H N H H H3C N N H N O H N N CH3 N O O S … electronic properties N H N 2,2,7-triméthylguanine H H H N N N H N H H 8-oxoadénine H N 8-oxoguanine H N O H N O N H N H H H O N N N H Fapy-adénine H H H N H N N H Fapy-guanine H H-bond characteristics N N H H N H N O O H 1,8 - 2 Å d- d+ d- N H N donneur accepteur N C 2,8 - 3 Å H N Horizontal Interactions Base pairing. In helices Complementary Watson-Crick C H 4 3N O6 H N1 N G N N O 2 H N 2 H H O 4 U N 3N H H N6 N1 N N A N N O H3C H O 4 T 3N N H H N6 N 1 N A N N O 55 ° 55 ° 10.5 Å Vertical interactions : stacking H O N N N O H H N N N O O N N H N N H N N N N H H H H H N N O O H H O N O N N O N O N N N H N N O N H H H Stacking forces • Driving Force : hydrophobic effect. • Not very specific •Partition in very polar regions (phosphates) & less polar ones (exocyclic groups of bases) History of the many roles of RNA Central dogma The flow of genetic information transcription DNA translation RNA Protein DNA notoriety Short history of RNA • Late 1800’s - 2nd kind of nucleic acid not in the nucleus (rRNA) • 1920’s - sugar for DNA vs RNA • 1958 - tRNA (Hoagland) Relative Amount of • 1960’s - mRNA RNA in E. coli rRNA 80% tRNA 15% mRNA 5% RNA •“Three” different types of RNA •mRNA - messenger RNA, specifies order of amino acids during protein synthesis •tRNA - transfer RNA, during translation mRNA information is interpreted by tRNA •rRNA – ribosomal RNA, combined with proteins aids tRNA in translation Ribosomal RNA (rRNA) Phylogeny of Life using SSU rRNA Discovery of catalytic RNA • • • • Early 1980’s : Tom Cech & Sidney Altman Self-splicing group I introns and Ribonuclease P 360 P9.2 P9.1 P9.1a 370 380 AG G C G U A U G UU U A A U C A A G G G U C GC C G G U CA C A A A C 350 • • • • A • • • • • • • • • • • • • • • • • • • • • • G G U A U A U G A U U A G U U U C U A G CG G A G U G P13'' A AU GA AU U 390 400 340 P9b 330 P9a U A G G G AG U G G A G A A UC C UC UC C C U 320 A G AC A G C 3´ g 5´ U P5a G C C G U a U 130 U A u A 200 A U G C g C 120 G C G U P10 C g 190 U A P5 U G a U U C G C G 20 U a 410 A G C G u G U A U U C A A G u A U U A P9.0 A G c A A GC G A P1 A u A C G G c U A C G G u 210 A G C G c 260 G C 180 110 G C C G P5c A U P4 G C CA C G A A AG G G U A C G U 310 U A 170 C A A U G C P7 G U C CG G A 140 A U U U G P14'' A U A A U U P6 G U U A 160 G C C G A A 270 C A A U A A U A P5b G C C A C G A U A G U U G 220 U G G U 100 G C A U G U A C G P3 A C G P6a C G C G G 150 C G 250 A A U A A U U G C A A A 300 U A G G U C G 280 U A U G C G C G P8 230 A U U A A U U A P6b C G C G A U U A G C 240 U U 290 A UG U A U CU A P13' A A 80 90 40 30 A A AC A C CGU G G A C UA U UG A C G GA A A U U U G G U A U • • • • • • • • • • • • • • • • • • • • • U G C C U G G U A G C U A G U C UU U A A A C C A AU P14' CA AGA 50 70 60 P2 P2.1 P13 P8 P14 P2 Group I self-splicing introns Core structure 9 5 5' 3' P10 P5 P9.0 G P1 C P4 G 5' P7 7 P6 P3 3 P8 2 6 8 Catalytic Catalytic Core Core of of Group Group II introns introns Réaction de Transesterification transestérification Ribozyme N P O HO N G O O O O O N OH N O P O O O O P 3' OH O OH O U O O P OH O O O U O Exon 5' H N H O H O O 5' ! Second discovery of RNA • ncRNAs - functional RNA molecules rather than proteins; RNA other than mRNA (ex.XIST) • RNAi - RNA interference • siRNA- active molecules in RNA interference; degrades mRNA (act where they originate) • miRNAs - tiny 21–24-nucleotide RNAs; probably acting as translational regulators of protein-coding mRNAs (regulate elsewhere) Other Roles of RNA • stRNA - Small temporal RNA; (ex. lin-4 and let-7 in Caenorhabditis elegans : development • snRNA - Small nuclear RNA; includes spliceosomal RNAs • snoRNA - Small nucleolar RNA; most known snoRNAs are involved in rRNA modification • RNA world - RNA as catalyst Central dogma The flow of genetic information transcription DNA translation RNA X Protein ncRNA genes • Genomic dark matter • Ignored by gene prediction methods • Not in EnsEMBL • Computational complexity • ~10% of human gene count? RNA interference Intricate maturation pathways Implicated in chromatine remodelling Cleavage part of DICER Measuring device for 21 nt ONE Role of RNA in cells 1 Transcription DNA tRNA DNA mRNA RNA polymerase RNAr 1 anticodon protein RNA Polypeptide chain nucleotides 2 Proteins Amino acids 2 Translation mRNA codon ribosome Versatility of RNA functions • Not only messenger RNAs (alternative splicing) • Number & variety of non-coding RNAs : ribosomal RNAs, snRNAs, snoRNAs,and numerous regulator RNAs.. • Cofactor RNAs : telomerase, • …… to be discovered Properties of RNA molecules Assemble in double-starnded helices like DNA Carry GENETIC INFORMATION like DNA Fold in complex tertiary architectures like proteins Perform CHEMICAL CATALYSIS like proteins Catalytic RNAs • Ribonuclease P • Self-splicing introns • Hepatitis delta virus • The ribosome and peptide bond formation • The spliceosome (not fully proven yet) • and ... Great diversity of RNA functions and architectures Genome Transfer RNA Ribozyme 2D Different levels of organization possibly hierarchically structured. 3D The bacterial ribosome : 270 000 atoms (C,N, O, P) 55 proteins 3 RNA (4600 nucleotides) Ribosome active site 30S 50S Nissen et al. (2000) Science, 289 H. F. Noller, T. A. Steitz, P. B. Moore, A.Yonath, V. Ramakrishnan Luc Jaeger © Only RNA in the reaction site Comparisons of 3D structures Comparisons of sequences (((( ((( GCUG UUAGG GGA GUUUUA GCCG UUAGG GGA GUUUCA GUUG UAGG GGA GUCUCA GCUG GAGG GAA GC AA ACUU CAGU GGA GC AA ACUU CAGU GGA GC AA GAUG GAGG UUG G AAA GGGC CAGG GGU G AAA GGCC UAGG UCG G AAA GGCC CAGG UCG G AAA GGCC CAGG UCG G AAA GGCC CAGG UCG G AAA GGCC CAGG UCG G AAA ))) UCC UCC UCC UUC UCC UCC CAA ACC CGG CGG CGG CGG CGG )))-) AGCGU CAG-C AGCGA UGG-C AGCA CAA-C AGCA CAG-C AGCA GAGAU AGCA GAGAU UGCA CAU-C AGCA GCC-A AGCA GGU-C AGCA GGU-C AGCA GGU-C AGCA GGU-C AGCA GGU-C Biological sequence analysis Protein easy RNA hard Watson-Crick base paired helices Internal loops (symmetric, Asymmetric, bulge) Hairpin loops Single-strands junctions 2D RNA alignments • RNA sequences are aligned/compared differently because sequence variation in RNA maintain base-pairing patterns • Thus an alignment will exhibit covariation at interacting basepairs • RNA specifying genes will have conserved regions reflecting common ancestry Main building block : the RNA double helix held together by Watson-Crick pairs