Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Date: 4.3 Trigonometry Extended: The Circular Functions Find a coterminal angle. Give at least 3 answers for each Subtract 360º from 60º : y - 300º Subtracty 360º from -120º : - 480º 240º 60º x 420º x -120º Add 360º to 420º : Add 360º to 240º : 780º 600º These angles will have the same initial and terminal sides. Coterminal Angles An angle of xº is coterminal with angles of xº + k · 360º where k is an integer. Assume the following angles are in standard position. Find a positive angle that is coterminal with: a. a 30º angle b. a -2π/3 angle a.For a 30º angle, add 360º to find the coterminal angle. 30º + 360º = 390º A 390º angle is coterminal with a 30º angle. b. For a -2π/3 angle, add 2π (same as 360º) to find the coterminal angle. - 2π/3 + 2π = 4π/3 A 4π/3 angle is coterminal with a -2π/3 angle. y Text Example Let P = (-3, -4) be a point on the terminal side of . Find each of the six trigonometric functions of . 5 -3 -5 5 -4 x 2 2 4 3 5 r -5 P =(-3, -4) x = -3 y = -4 y 4 4 x 3 3 y 4 4 , tan sin , cos x 3 3 r 5 5 r 5 5 x 3 3 r 5 5 r 5 5 , cot csc , sec y 4 4 x 3 3 y 4 4 The bottom row shows the reciprocals of the row above. Definitions of Trigonometric Functions of Any Angle If is an angle in standard position, and let P = (x, y) be a point on the terminal side of . If r = x2 + y2 is the distance from (0, 0) to (x, y), the six trigonometric functions of are defined by the following ratios. y sin r y tan x x0 r x r csc sec cot y y x y0 x0 y0 x cos r P = (x, y) r x y Paper Plate Unit Circle Evaluate, if possible, the cosine function and the sine function at the following four quadrantal angles and place them on your paper plate Unit Circle: 0 0 1 cos 0 1 1 0 sin 0 0 1 (0,1) (-1,0) 180 1 cos 1 1 0 sin 0 1 90 2 0 cos90 0 1 (1,0) 1 1 sin 90 (0,-1) 1 3 270 2 3 0 cos 0 2 1 3 1 sin 1 2 1 Definition of a Reference Angle Let be a nonacute angle in standard position that lies in a quadrant. Its reference angle is the positive acute angle ´ prime formed by the terminal side or and the x-axis. b Find the reference angle , for: =315º 315 Solution: ´ =360º - 315º = 45º a a 45 b P(a, b) DAY 2 More on the Unit Circle Paper Plate and Reference Angles Find a reference angle, , for each of the following angles (and place them on your Unit circle too): 210 QIII : 180 60º 30º π/4 210 180 30 240 QII : since is negative: 240 180 60 7 4 QIV : 360 7 2 4 8 7 4 4 4 The Signs of the Trigonometric Functions STUDENTS Quadrant II SINE positive y ALL Quadrant I ALL FUNCTIONS positive (and cosecant) x TAKE Quadrant III TANGENT positive CALCULUS Quadrant IV COSINE positive (and cotangent) (and secant) If tan < 0 and cos >0, name the quadrant that lies. IV Text Example Use reference angles to find the exact value of sin 135° y Step 1 Find the reference angle 135º terminates in quadrant II with a reference angle ´ = 180º – 135º = 45º 135° 45° x The function value, sin 45º, for the reference angle is sin 45º = 2 2 Step 2 Use the quadrant in which lies to prefix the appropriate sign to the function value. Because the sine is positive in quadrant II, put a + sign before the function value of the reference angle. 2 2 sin 135 = +sin45 = 2 2 Use reference angles to find the exact value of the following trigonometric function (sketch it): sin 5π/3 in QIV, Sine is negative in QIV sin(2 5 / 3) sin / 3 3 2 60º 30º - Use reference angles to find the exact value of the following trigonometric functions (sketch it). c. sec (-30º) a. cos 2π/3 b. tan 225º in QII, Cosine is in QIII, Tangent is negative in QII positive in QIII in QIV, Secant is positive in QIV 2 cos( ) tan(225 180) 3 tan 45 cos 1 3 1 2 sec 30 2 3 2 3 3 5 7 2 Unit 12 o 2o 12 o 3 3 90 75 105 o 3 o 60 Circle 120 4 o 4 o 45 5 135 o o 6 6 150 30 11 o o 165 15 12 12 180o 360o or 0o 0 or 2 o 23 345 13 195o o 12 o 12 330 11 210 7 o o 315 6 6 5 225 7 o o 300 240 o o 5 4 4 4 255 270o 285 19 3 3 3 17 12 12 2 Find cos θ and tan θ by using the given information to construct a reference triangle: sin θ = 3/7 and tan θ < 0 θ is in QII 2 10,3 3 2 10 cos or 0.904 7 7 2 10 tan 3 2 10 10 10 3 10 or 0.474 2 0 Trigonometry Extended: The Circular Function