Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Moment Generating Function and Probability Generating Function Definition. For any random variable X , the Moment Generating Function (MGF) , and the Probability Generating Function (PGF) are defined as follows: MX (t) = E[etX ] PX (z) = E[z X ] M GF P GF Note. MX (t) = PX (et ) Definition. k-th raw moment of any random variable X with density function f (x): ∫ ∞ xk f (x)dx if X is continuous −∞ µ′k := E(X k ) = ∑ k if X is continuous j xj P (X = xj ) Theorem. Let X be a random variable (continuous or discrete). If the moment generating function M = MX exists on a neighborhood of t = 0 , then The raw moments of X can be calculated through the derivatives M (k) (0) : E(X k ) = M (k) (0) Proof. M (n) (t) = dn dtn E(etX ) = E [ dn dtn ] [ ] etX = E X n etX 1 ⇒ M (n) (0) = E[X n ] Definition of the Gamma function: ∫ ∞ Γ(x) = tx−1 e−t dt 0<x<∞ 0 Example. Γ(1) = ∫∞ 0 [ ]t=∞ =1 e−t dt = − e−t t=0 Γ(1) = 1 The domain of this function is (0 , ∞). Now if x > 1 so that both x and x − 1 are in the domain of the Gamma function , then we have Γ(x) = (x − 1)Γ(x − 1) Here is how: ∫ ∞ ∫ Γ(x) = tx−1 e−t dt = 0 ∞ x>1 ( ) [ ]t=∞ ∫ tx−1 − e−t = − tx−1 e−t + t=0 0 ∫ = 0 + (x − 1) ∞ tx−2 e−t dt = (x − 1)Γ(x − 1) ∞ ( ) e−t d tx−1 0 ✓ 0 Example. K a positive integer Γ(k) = (k − 1)Γ(k − 1) = (k − 1)(k − 2) · · · (1)Γ(1) = (k − 1)! Γ(k) = (k − 1)! K a positive integer We use this equality to define x! for x > −1 : If x is any real number with x > −1 then we define Note. In the integral Γ(α) = ∫∞ 0 x! = Γ(x + 1) tα−1 e−t dt if we make the change of variable t = xθ , the integral takes the new shape: ∫ ∞ xα−1 e− θ dx = θα Γ(α) x 0 2 Example. The Weibull(θ , τ ) distribution has the density function ( x )τ τ f (x) = x τ x τ e− ( θ ) τ xτ −1 e−( θ ) = x θτ θ x>0 θ>0 Calculate its raw moments. Solution. ∫ x τ τ xn+τ −1 e−( θ ) θτ ∞ n E(X ) = 0 Now make the change of variable y = xτ . Then τ xτ −1 dx = dy n τ xn+τ −1 dx = xn dy = y τ dy. ⇒ Then in continuation to the above calculations: = = 1 θτ ∫ ∞ y y τ e− θτ dy = n 0 1 θτ ∫ ∞ y y α−1 e− θτ dy where α = 0 n +1 τ ) n 1 τ n +1 ( n τ Γ + 1 = θn Γ( + 1) (θ ) τ θ τ τ Example. The Gamma(α , θ) distribution has the density function f (x) = 1 α −x θ e θ =x>0 Γ(α) θ>0 τ >0 Calculate the MGF and the raw moments of the Gamma distribution. Solution. ∫ M (t) = E(e tX ∞ )= 0 1 = Γ(α)θα ∫ ∞ x 1 e f (x) dx = Γ(α)θα α−1 −( θ1 −t)x e 0 1 Γ(α) = Γ(α)θα ( θ 1 − θt ∫ tx )α = 1 dx = Γ(α)θα 1 (1 − θt)α ∞ etx xα−1 e− θ dx x 0 ∫ ∞ xα−1 e−( 0 ✓ 3 1−θt θ )x dx τ >0 To find the raw moments: M (t) = (1 − θt)−α M (n) (t) = (−θ)n (−α)(−α − 1) · · · (−α − k + 1)(1 − θt)−α−k = θn α(α − 1) · · · (α − k + ⇒ 1)(1 − θt)−α−k ⇒ E(X n ) = M (n) (0) = θn α(α − 1) · · · (α − k + 1) ✓ Example. The Pareto(α , θ) distribution has the density function f (x) = α θα (x + θ)α+1 Find the raw moment E(X n ) for n < α. Solution. ∫ ∞ n Eα (X ) = 0 ∫ = αθ α ∞ 0 [ = αθ α xn αθα dx = αθα (x + θ)α+1 ( 1 x d − (x + θ)−α α = 0 + αθα n α ∫ 0 So, Eα (X n ) = ∞ 0 n + α ∫ 0 [ = αθ ∞ nθ α−1 xn (x + θ)−α−1 dx 0 α 1 − xn (x + θ)−a α ]∞ ∫ − αθ 0 α 0 ∞( ) 1 −a − (x + θ) d(xn ) α xn−1 dx (x + θ)α ∫ n xn−1 dx = α (x + θ) α−1 Eα (X n ) = · · · = ( =( ]∞ ∞ ) n xn − α(x + θ)α ∫ 0 ∞ nθ xn−1 (α − 1)θα dx = Eα−1 (X n−1 ) α (x + θ) α−1 Eα−1 (X n−1 ). By repeated application of this equality, we get nθ (n − 1)θ θ )( )···( )Eα−n (x0 ) α−1 α−1 α−n+1 (n − 1)θ θ nθ )( )···( ) α−1 α−1 α−n+1 (n − 1)θ θ nθ =( )( )···( ) α−1 α−1 α−n+1 ∫ ∞ 0 ∫ ∞ 1 dx (x + θ)α−n+1 (x + θ)−α+n−1 dx 0 [ ]∞ (n − 1)θ θ 1 nθ −α+n )( )···( ) (x + θ) =( α−1 α−1 α − n + 1 −α + n 0 4 [ ]∞ nθ (n − 1)θ θ 1 1 =( )( )···( ) α−1 α−1 α − n + 1 n − α (x + θ)α−n 0 =( nθ (n − 1)θ θ θ θn n! )( )···( )( )= α−1 α−1 α−n+1 α−n (α − 1) · · · ()α − n Example. Calculate the PGF of the Uniform(a, b) . Solution. ∫ X b zx PX (z) = E(z ) = a 1 [ 1 x ]x=b zb − za 1 dx = z = b−a b − a ln z (b − a) ln(z) x=a Example. Calculate the PGF of a discrete uniform random variable with support { n1 , 2 n , ... , n n} : P (X = k 1 )= n n k = 1, ..., n Solution. Before anything we recall that for a geometric progression with common ratio r we have a + ar + ar2 + · · · + arn−1 = first term(1 − rnumber of terms ) a(1 − r) = 1−r 1−r n n n [ ] ∑ ∑ k k 1 k 1∑ k z n P (X = ) = zn = zn PX (z) = E z X = n n n k=1 k=1 1 z n (1 − (z n )n ) 1 ∑ ( 1 )k 1 z n (1 − z) zn = = 1 n n n 1 − z n1 1 − zn k=1 n = k=1 1 1 1 Uniqueness Theorem in terms of MGF. Let X and Y are two random variables whose mgf functions exist on a neighborhood of the origin. If for all t in some neighborhood t ∈ (−h , h) of the origin we have MX (t) = MY (t) , then X are Y are identically distributed , i.e. they have identical distributions. Uniqueness Theorem in terms of PGF. Let X and Y are two random variables whose pgf functions exist on a neighborhood of the point 1. If for all t in some neighborhood 5 t ∈ (1 − h , 1 + h) of the 1 we have PX (t) = PY (t) , then X are Y are identically distributed , i.e. they have identical distributions. 6