Download Day X 5.5

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
In the book of life, the
answers aren't in the
back.
Charles M. Schulz
(1922 – 2000)
an American cartoonist,
who wrote the comic
strip Peanuts
Chapter 5
Analytic Trigonometry
Day X.
Multiple-Angle
and
Product-to-Sum
Formulas (5.5)
Standard 11.1
Students demonstrate an
understanding of half-angle
and double-angle formulas
for sines and cosines
Double- Angle
Identities
The most commonly used
multiple-angle formulas
are the double-angle
formulas.
sin 2θ = sin (θ + θ)
State the sum identity for
sine.
sin( + ) =
sin  cos  + cos  sin 
Substitute θ in for  and
.
sin(
θ + θ) =
sin θ cos 
 sin θ
=
θ + cos θ
2 sin θ cos θ
sin 2θ = 2 sin θ cos θ
We have just derived the
double-angle formula for
sine. You do the same for
cosine and tangent.
cos 2θ =
2
cos
θ–
2
sin
2 tan θ
tan 2θ =
2
1 – tan θ
θ
cos 2θ has 3 forms.
2
cos
2
sin
cos 2θ =
θ–
θ
2
2
cos θ = 1 – sin θ
2
= 1 – 2 sin θ
2
2
sin θ = 1 – cos θ
2
= 2 cos θ - 1
Example 1
Finding the Exact
Values
Use the figure to find the
exact value of the trig
functions.
1
θ
3
sin 2θ = 2 sin θ cos θ
3
1
=2

10 10
= 3/5
Your Turn
1
3
θ
tan 2θ =
¾
1
3
θ
sec 2θ =
5/4
Example 2
More Exact Values
Find the exact values of
sin 2u, cos 2u, and tan
2u if cos u = -2/3 and
/2 < u < .
5
3
-2
sin 2θ = 2 sin θ cos θ
-45/9
5
3
-2
cos 2θ =
2
cos
θ–
-1/9
2
sin
θ
5
3
-2
2
tan
θ
tan 2θ =
2
1 – tan θ
45
or
sin
2θ
tan 2θ =
cos 2θ
What do you get when
you cross an elephant
with a Volkswagen?
A little car with a big
trunk.
Half- Angle Identities

1
–
cos

sin = 
2
2
1
+
cos


cos = 
2
2

tan = 
2
1 – cos 
1 + cos 
Example 3
Using Half-Angle
Identities
Find the exact values of
the sine, cosine, and
tangent of the given
angle using the half-angle
formulas.

30
sin
= sin 15 = sin
2
12
30
sin
= + 1 – cos 30
2
2
30
sin
=
2
=
2 - 3
2
2
3/2
1 – cos
30
2
2 - 3
=
4
=
2 - 3
= 2 - 3
4
2
Your Turn
2
2
cos 67.5 =
2
tan 165 = -2 + 3
Standard 11.2
Students can use those
formulas to prove and/or
simplify other
trigonometric identities.
Example 4
Verify the Identity
x
tan = csc x – cot x
2
Your Turn
sin 2x – cos 2x = sec x
sin x
cos x
Related documents