Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Aim: How do we differentiate the natural logarithmic function? Do Now: Evaluate: 5 1 1 dx x Power Rule n 1 x n x dx n 1 C , n 1 Aim: Differentiating Natural Log Function Course: Calculus Inverse Exponential Function Exponential Equation Exponential example y = bx y = 2x Exponential Equation Exponential example x b Logarithm = Exponent Inverse of Inverse of x = by y= x = 2y “x is the logarithm of y” Logarithmic Equation Logarithmic example y = logbx y = log x y = log2x b logb x = y if and only if by = x “y is the logarithm of x The expression logb x is read as the “log base b of x”. The function f(x) = logb x is the logarithmic function with base b. Aim: Differentiating Natural Log Function Course: Calculus Natural Logarithmic Function f(x) = logex = ln x, x>0 1. ln 1 = 0 because e0 = 1 2. ln e = 1 because e1 = e 3. ln ex = x because ex = ex 4. e ln x x inverse property 5. If ln x = ln y, then x = y 4 x 1 lim 1 e x x vx = ex 2 -5 5 The logarithmic function with base e ux = ln x is called the natural log function. Aim: Differentiating Natural Log Function Course: Calculus -2 -4 Properties of Natural Log 1. The domain is (0, ) and the range is (-, ). 2. The function is continuous, increasing, and one-to-one. 3. The graph is concave down. If a and b are positive numbers and n is rational, then the following are true • ln(1) = 0 4 2 • ln(ab) = ln a + ln b • ln(an) = n ln a -5 • ln (a/b) = ln a – ln b Aim: Differentiating Natural Log Function 5 -2 -4 Course: Calculus ux = ln x Using Properties of Natural Logarithms Rewrite each expression: 1 1. ln ln e 1 e ln ex = x = -1 2. ln e2 =2 ln ex = x 3. ln e0 =0 ln ex = x because ex = ex 4. 2ln e =2 ln e = 1 because e1 = e Aim: Differentiating Natural Log Function Course: Calculus Model Problems Use natural logarithms to evaluate log4 30 log c M log b M log c b ln 30 3.401198... log 4 30 ` 2.4538.... ln 4 1.38629... Given ln 2 0.693, ln 3 1.099, and ln 7 1.946, use the properties of logs to approximate a) ln 6 b) ln 7/27 ln 6 = ln (2 • 3) = ln 2 + ln 3 0.693 + 1.099 1.792 ln 7/27 = ln 7 – ln 27 = ln 7 – 3 ln 3 1.946 – 3(1.099) -1.351 Aim: Differentiating Natural Log Function Course: Calculus Model Problems Use properties of logarithms to rewrite 3x 5 ln 7 x ln 2 3 = ln(3x – 5)1/2 – ln 7 = 1/2 ln(3x – 5) – ln 7 2 x x 1 3 2 ln( x 2 3)2 ln x 3 x 2 1 2ln( x 3) ln x ln x 2 1 2 2ln( x 3) ln x ln x 1 2 2 13 1 2ln( x 3) ln x ln x 2 1 3 2 Aim: Differentiating Natural Log Function Course: Calculus 13 Power Rule – the exception x3 Dx x 2 3 x2 Dx x 1 2 Dx x x 0 Dx ??? x 1 D x x 1 x 2 3 x 2 x dx 3 C 2 x 1 x dx 2 C dx x C dx ??? C x dx 2 x 1 C x Aim: Differentiating Natural Log Function Course: Calculus Power Rule – the exception Evaluate: 5 1 5 1 1 dx x 1 x dx x 5 5 x !!!! 0 1 0 1 1 1 0 Power Rule n 1 x n x dx n 1 C , n 1 don’t work! Aim: Differentiating Natural Log Function Course: Calculus Power Rule – the exception Power Rule n 1 x n x dx n 1 C , n 1 no antiderivative for f(x) = 1/x 2nd Fundamental Theorem of Calculus d x dF f t dt f ( x ) dx a dx Definition of the Natural Logarithmic Function accumulation function 1 ln x dt , x 0 1 t The domain of the natural logarithmic function is the set of all positive real Aim: Differentiating numbers. Natural Log Function Course: Calculus x 4 Definition of the Natural Log Function 2 ln x x 1 1 dt , t x0 -5 5 -2 4 3.5 4 1 f x = x 3.5 3 3 2.5 2.5 ln x is positive when x > 1 2 1.5 1.5 1 0.5 0.5 1 2 3 x 4 ux = ln x -4 ln x is negative when x < 1 2 1 1 1 f x = x x 1 1 2 3 4 x1 1 If x 1, dt 0 If 0 < x 1, dt 0 1 t 1 t 11 ln(1) = 0 dt 0 1 t The natural log function measures the area Aim: Differentiating Natural Log Function Course: Calculus under the curve f(x) = 1/x between 1 and x. x 4 e ln x x 1 1 dt 1 t 2 (e, 1) -5 5 What is the value of x? e e1 ln e dt 1 1 t 4 3.5 1 f x = x -2 -4 ux = ln x ln e 1 loge e 1 e1 e 3 2.5 2 1 Area = dt 1 1 t e 1.5 ln e n n ln e n 1 1 n 0.5 1 1 2 ex 3 4 Aim: Differentiating Natural Log Function Course: Calculus 1 Natural Log Function The Derivative of the ln x dt , x 0 1 t 2nd Fundamental Theorem of Calculus d x dF f t dt f ( x ) a dx dx x d x1 1 d dt ln x x 0 dx 1 t x dx Let u be a differentiable function of x . d 1 ln x , x 0 dx x Chain Rule d 1 du u ' ln u ,u0 dx u dx u Aim: Differentiating Natural Log Function Course: Calculus Model Problems d ln 2 x 1. dx u 2x u’ = 2 d u' 2 1 ln 2 x dx u 2x x d 2. ln x dx u x 1 1 2 u' x 2 d 1 1 1 1 1 2 1 ln u ' 1 2 x dx u u x 2 2x Aim: Differentiating Natural Log Function Course: Calculus Model Problems d 2 ln x 1 dx u x2 1 u’ = 2x u' 2x 2 u x 1 d d d x ln x x ln x ln x x dx dx dx 1 x ln x 1 1ln x x d 3 2 d ln x 3 ln x ln x dx dx 2 1 3 ln x x Aim: Differentiating Natural Log Function Course: Calculus Rewrite Before Differentiating Differentiate f ( x ) ln x 1 rewrite f ( x ) ln x 1 12 1 ln x 1 2 d 1 1 d ln x 1 ln x 1 dx 2 2 dx d 1 du u ' ln u dx u dx u u x1 u’ = 1 1 1 1 f '( x ) 2 x 1 2 x 1 Aim: Differentiating Natural Log Function Course: Calculus Model Problem Differentiate f ( x ) ln rewrite x x 1 2 2 2 x3 1 1 ln x 2ln x 1 2 x 3 1 2 2 d 1 du u ' u = x2 + 1 ln u u’ = 2x dx u dx u 1 f '( x ) 2 x u = 2x3 – 1 u’ = 6x2 2 2x 1 6x 3 2 x 1 2 2 x 1 1 4x 3 x2 2 3 x x 1 2x 1 Aim: Differentiating Natural Log Function Course: Calculus Logarithmic Differentiation 14 x of2 logs to simplify Applying the laws Differentiate y 2 12 10 g x = x-2 2 2 quotients, products functions that include x 1 and/or powers can simplify differentiation. y is always positive therefore ln y is defined x 2+1 0.5 8 6 4 2 5 10 -2 x 2 ln y ln 2 take ln of both sides x2 1 1 2 ln y 2ln x 2 ln x 1 2 y' 1 1 2x 2 2 y x 2 2 x 1 Aim: Differentiating Natural Log Function Log properties Differentiate Course: Calculus 15 Using Log Derivative x 2 Differentiate y y' 1 1 2 y x 2 2 2 x2 1 2 x 2x 2 2 x2 x 1 x 1 x 2 y' y 2 x 2 x 1 Solve for y’, x2 2 x 2 2 2 x 2 x 1 x 1 2 x 2 x 2x 2 32 2 x 1 x 2 2 Aim: Differentiating Natural Log Function Substitute for y & Simplify Course: Calculus Derivative Involving Absolute Value If u is a differentiable function of x such that u 0, then d u' ln u dx u Find the derivative of f(x) = ln|cosx| u = cosx u’ = -sinx d u' ln cos x dx u sin x cos x tan x Aim: Differentiating Natural Log Function Course: Calculus Model Problem Find the relative extrema of y ln x 2 2 x 3 u = x2 + 2x + 3 u' 2x 2 y' 2 u’ = 2x + 2 u x 2x 3 2x 2 1st Derivative 0 x 1 2 Test x 2x 3 f(-1) = ln[-12 Evaluate + 2(-1) + 3] = ln 2 critical point Relative Extrema Minimum– (-1, ln2) 2 x 2 4 x 2 y '' 2 2 x 2x 3 at x 1 positive result concave up Aim: Differentiating Natural Log Function 2nd Derivative Test 6 g x = lnx 2+2x+3 4 2 -5 Course: Calculus 5 Aim: How do we differentiate the natural logarithmic function? Do Now: ln t Find the derivative for g( t ) 2 t Aim: Differentiating Natural Log Function Course: Calculus