Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
The Problem: Optimized Management of Resources Inadequate conventional routers System constraints Battery-powered wireless nodes Need to take into account for the nature of timevarying wireless channels Average and peak energy Quality of Service (QoS): Maximum delay Data Link Queue Length? TARGET Energy – vs – Queue Length trade-off To design computationalliy efficient schedulers, that optimally allocate the energy for bursty sources over the wireless channels System Architecture (1/5) Time is slotted (t ) Fading is assumed slowly varying (block fading) Channel (t ) 0 , t 0 (t) , 0 t 0 p( ) Current value of the channel-state known slot by slot Channel probability density function known at the controller (the hypothesis will be removed in the following) System Architecture (2/5) (t ) Random variable (r.v.) a(t) with probability density p(a) known at the trasmitter (the hypothesis will be removed in the following) a (t ) λ(t) (IU/slot) number of controlled IU arriving at the input of the queue at the end of slot t Arrival process a(t) , 0 Link state t 0 p(a) (t) , 0 t 0 p( ) System Architecture (3/5) Rate-function IU(t) of the considered system (t ) a (t ) IU (t ) Summarizes: The coding system The modulation scheme The error probability PE (ex. 16-QAM, RS 2/3) Arrival process a(t) , 0 t 0 p(a) Rate-function of the considered system IU (t ) R( (t ); (t )) Link state (t) , 0 t 0 p( ) ex. : ( IU / Slot ) c R( (t ); (t )) c1 log 1 2 ( c P ) 3 E System Architecture (4/5) Energy constraints: Average energy for slot: (t ) Peak energy for slot: ɛMAX (Joule) ɛP (Joule) a (t ) IU (t ) Arrival process a(t) , 0 Link state t 0 p(a) (t) , 0 t 0 p( ) Rate-function IU (t ) R( (t ); (t )) Energy constraints MAX & P ( IU / Slot ) System Architecture (5/5) Given the energy constraints (ɛMAX and ɛP) and the traffic patterns (p(a),λ), how much energy must be radiated slot by slot to minimize the avegare queue length SAVE? (t ) a (t ) IU (t ) (t ) Arrival process a(t) , 0 Link state t 0 p(a) (t) , 0 t 0 p( ) Rate-function IU (t ) R( (t ); (t )) ( IU / Slot ) Energy constraints AVE & P ( Joule) Formulation problem (1/2) VBR - Encoder a (t ) Transmit buffer st r (s t ; st ) e (s t ; st ) Scheduler Cross-layer VBR - Decoder r (s t ; st ) Data Link Layer st Wireless Link with Fading Physical Layer • p ( a ) probability density of arrivals: Known • l º E {a ( t )} ( IU / slot ) average number of arrivals • st ( IU ) number of the IUs buffered in the queue at the beginning of slot t Formulation problem (2/2) æ ö 1 t- 1 ç min ç lim sup å E {sn }÷ ÷ ÷ r ( t ) èt ® ¥ ø t n= 0 s.t. lim sup t® ¥ 1 t- 1 t n= 0 å E {en }£ e MAX 0 £ e (s t ; st ) £ e p , " st , " s t p(s) depends in an impredictible way unknown on the channel statistics, arrival statistics and service discipline Computationally intractable problem. Unconditional-vs.-Conditional Optimum (1/3) Conditional Problem Unconditional Problem æ ö 1 t- 1 ç min ç lim sup å E {sn }÷ ÷ ÷ r ( t ) èt ® ¥ ø t n= 0 1 t- 1 t n= 0 min E {st+ 1 | st } r (×) s.t. E s {e (s ; st )}£ eMAX , " st å E {en }£ e MAX 0 £ r ( s t ; st ) £ rp ( s t ; st ), " st , " s t 0 £ e (s t ; st ) £ e p , " st , " s t (rp ( s t ; st ) º min {st ; R ( s t ; e p )}) s.t. lim sup t® ¥ ò ò e (s , s ) p (s ) p ( s )d s ds £ eMAX s s ò e (s , st ) p(s )d s £ eMAX " st s arg min E {st+ 1 st }º arg min lim sup E {s(t )} r (.) r (.) t ® ¥ Unconditional-vs.-Conditional Optimum (2/3) Conditional Problem Unconditional Problem æ ö 1 t- 1 ç min ç lim sup å E {sn }÷ ÷ ÷ r ( t ) èt ® ¥ ø t n= 0 1 t- 1 t n= 0 min E {st+ 1 | st } r (×) s.t. E s {e (s ; st )}£ eMAX , " st å E {en }£ e MAX 0 £ r ( s t ; st ) £ rp ( s t ; st ), " st , " s t 0 £ e (s t ; st ) £ e p , " st , " s t (rp ( s t ; st ) º min {st ; R ( s t ; e p )}) s.t. lim sup t® ¥ ò ò e (s , s ) p (s ) p ( s )d s ds £ eMAX s s Wider energy domain ò e (s , st ) p(s )d s £ eMAX " st s Smaller energy domain (stronger constraint) Unconditional-vs.-Conditional Optimum (3/3) Conditional Problem min E {st+ 1 | st } r (×) s.t. E s {e (s ; st )}£ eMAX , " st 0 £ r ( s t ; st ) £ rp ( s t ; st ), " st , " s t r (s t , st ) = ? (rp ( s t ; st ) º min {st ; R ( s t ; e p )}) ò e (s , st ) p(s )d s £ eMAX " st s Wider energy domain Smaller energy domain (stronger constraint) Unconditional-vs.-Conditional Optimum How to generalize the optimal scheduler in the stronger energy domain to the wider domain? r opt (s t ; st* ; m( st* )) Wider energy domain Smaller energy domain (stronger constrait) r opt (s t ; st ; m*) mt* º m* mt* º m( st* ) ò ò e (s , r (s ; s ) p (s ) p ( s ) d s ds = s s ? Conditional Approach Conditional scheduler (convex optimization) ìïï min f ( s) í ïïî gt ( st ) £ 0 " st Objective function Constraints * If s is local minimum, $ m* such that the following conditions are met: ìï Ñ s L( s * , m* ) = 0 ï í * ïï m ×g ( s* ) = 0 " s t î t t t with L( s , m) = f ( x ) - å mt ×gt ( st ) t mt* º m( st* ) Lagrange Multiplier: cross-layer parameter Towards the Unconditional Optimal Scheduler (1/2) Conditional Problem Unconditional Problem ìï Ñ s L( s * , m* ) = 0 ï í * ïï m ×g ( s * ) = 0 î ìï Ñ s L( s * , m* ) = 0 ï í * ïï m ×g ( s* ) = 0 " s t î t t t mt* ×( ò e (s , r (s ; st )) p(s ) d s - eMAX ) = 0 " st s Buffer * Depending mt º m( st* ) m* ×( ò ò e (s , r (s ; s ) p(s ) p( s )d s ds - eMAX ) = 0 s s mn* º To design the scheduler as if the probability density p(s) was known Constant: * Buffer mNo Depending The Unconditional Optimal Scheduler ìï ìï - 1 æ 1 ö üï üï ï ï ï ï ÷ ç r (s t ; st ; m) = max í 0; min í er çs t ; ÷ ; s ; R ( s ; e ) ýý t t p ÷ çè m÷ ïï ïïî ïïþïï ø î þ * opt mopt a (t ) Transmit buffer r (s t ; st ; m) m st m= 0 e AVE 1 n = å e (s t ; st ; m) t t= 0 e AVE ? eMAX e(s t ; stt;;m 0) st Wireless Link 0 mt = m m = m+ D m £ eMAX * mopt =m r (s t ; st ; m) Unconditional Optimal Multiplier: Real-time computation a (t ) Transmit buffer r (s t ; st ; mt* ) st [(t - 1) ×et- 1 + et ] et = t m = m+ g t (emax - et ) et (s t ; st ; mt* ) st Wireless Link 0 mt* == m r (s t ; st ; mt* ) ìï üï ì ü æ ö ï ï 1 ïï ÷ r opt (s t ; st ; mt* ) = max ïí 0;min íï er- 1 ççs t ; * ÷ ; s ; R ( s ; e ) ýý t t p çè m ÷ ïï ïï ïï ïï ÷ ø t î þþ î