Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
8. Transducers (측정) Transducer: devices that convert some physical quantity, such as temperature or light level, to a voltage or some other electrical quantity A preamplifier (preamp) is an electronic amplifier which precedes another amplifier to prepare an electronic signal for further amplification or processing. The preamplifier circuitry may or may not be housed as a separate component. In general, the function of a preamp is to amplify a low-level signal to line-level. A list of common low-level signal sources would include a pickup, microphone, turntable or other transducer. Equalization and may also be applied. In a home audio system, the term 'preamplifier' may sometimes be used to describe equipment which merely switches between different line level sources and applies a volume control, so that no actual amplification may be involved. In an audio system, the second amplifier is typically a power amplifier (power amp). The preamplifier provides voltage gain (about: 10millivolts to 1volt) but no significant current gain. The power amplifier provides the higher current necessary to drive loudspeakers. transducer: any device that converts energy from one form to another, eg a loudspeaker, where electrical energy is converted into sound waves 소리 측정 Microphones Microphones are transducers which detect sound signals and produce an electrical image of the sound, i.e., they produce a voltage or a current which is proportional to the sound signal. The most common microphones for musical use are dynamic, ribbon, or condenser microphones. Besides the variety of basic mechanisms, microphones can be designed with different directional patterns and different impedances. Dynamic Microphones Advantages: •Relatively cheap and rugged. •Can be easily miniaturized. Disadvantages: •The uniformity of response to Principle: sound moves the cone and the attached coil of wire moves different frequencies does not match that of the ribbon or in the field of a magnet. The generator effect produces a voltage condenser microphones. which "images" the sound pressure variation - characterized as a pressure microphone. Ribbon Microphones Principle: the air movement associated with the sound moves the metallic ribbon in the magnetic field, generating an imaging voltage between the ends of the ribbon which is proportional to the velocity of the ribbon - characterized as a "velocity" microphone. Advantages: •Adds "warmth" to the tone by accenting lows when close-miked. •Can be used to discriminate against distant low frequency noise in its most common gradient form. Disadvantages: •Accenting lows sometimes produces "boomy" bass. •Very susceptible to wind noise. Not suitable for outside use unless very well shielded. Condenser Microphones Advantages: •Best overall frequency response makes this the microphone of choice for many recording applications. Disadvantages: •Expensive •May pop and crack when close miked •Requires a battery or external power supply to bias the plates. Principle: sound pressure changes the spacing between a thin metallic membrane and the stationary back plate. The plates are charged to a total charge where C is the capacitance and V the voltage of the biasing battery. A change in plate spacing will cause a change in charge Q and force a current through resistance R. This current "images" the sound pressure, making this a "pressure" microphone. Electret Condenser Microphone (ECM) -electret 물질 : 자체로서 전하를 띄고 있는 물질 (예 : fluoropolymers, polypropylene, polyethyleneterephthalate) -capacitor의 한 전극을 electret물질로 코팅하면, 따로 전압을 거는 회로가 필 요 없음. -electret 물질이 코팅된 전극과 다른 전극으로 구성된 capacitor의 전압을 JFET로 읽어서 증폭 -소형화가 쉽기때문에, 작은 모바일 기기에 많이 사용됨 Piezoelectric Microphones 소리에 여기에 이러한 만들어 의해서 diagphragm이 흔들리면, 고정된 piezo crystal이 휘게 되고, 휨은 piezo crystal 양단에 전압을 준다 Dynamic Loudspeaker Principle A current-carrying wire in a magnetic field experiences a magnetic force perpendicular to the wire. Loudspeaker Details An enormous amount of engineering work has gone into the design of today's dynamic loudspeaker. A light voice coil is mounted so that it can move freely inside the magnetic field of a strong permanent magnet. The speaker cone is attached to the voice coil and attached with a flexible mounting to the outer ring of the speaker support. Because there is a definite "home" or equilibrium position for the speaker cone and there is elasticity of the mounting structure, there is inevitably a free cone resonant frequency like that of a mass on a spring. The frequency can be determined by adjusting the mass and stiffness of the cone and voice coil, and it can be damped and broadened by the nature of the construction, but that natural mechanical frequency of vibration is always there and enhances the frequencies in the frequency range near resonance. Part of the role of a good enclosure is to minimize the impact of this resonant frequency. Temperature Measurement Thermocouples In electrical engineering and industry, thermocouples are a widely used type of temperature sensor[1] and can also be used as a means to convert thermal potential difference into electric potential difference.[2] They are cheap[3] and interchangeable, have standard connectors, and can measure a wide range of temperatures. The main limitation is accuracy; System errors of less than one degree Celsius (°C) can be difficult to achieve.[ Type K (chromel–alumel) is the most commonly used general purpose thermocouple. It is inexpensive and, owing to its popularity, available in a wide variety of probes. They are available in the −200 °C to +1350 °C range. The type K was specified at a time when metallurgy was less advanced than it is today and, consequently, characteristics vary considerably between examples. Another potential problem arises in some situations since one of the constituent metals, nickel, is magnetic. One characteristic of thermocouples made with magnetic material is that they undergo a step change when the magnetic material reaches its Curie point. This occurs for this thermocouple at 354°C. Sensitivity is approximately 41 µV/°C. K-type thermocouple Thermocouple plugged to a multimeter displaying room temperature in °C. -서로 다른 두금속의 접합면(thermocouple)을 만들어서, 두금속간의 built-in potential이 온도에 따라 변하는 것을 측정하여 온도측정 Thermistors A thermistor is a type of resistor with resistance varying according to its temperature. Thermistors are widely used as inrush current limiters, temperature sensors, self-resetting overcurrent protectors, and selfregulating heating elements. Assuming, as a first-order approximation, that the relationship between resistance and temperature is linear, then: ΔR = kΔT first-order temperature coefficient of resistance a positive temperature coefficient (PTC) thermistor, or posistor negative temperature coefficient (NTC) thermistor. Thermistors differ from resistance temperature detectors (RTD) in that the material used in a thermistor is generally a ceramic or polymer, while RTDs use pure metals. The temperature response is also different; RTDs are useful over larger temperature ranges, while thermistors typically achieve a higher precision within a limited temperature range. Resistance thermometers, also called resistance temperature detectors (RTDs), are temperature sensors that exploit the predictable change in electrical resistance of some materials with changing temperature. As they are almost invariably made of platinum, they are often called platinum resistance thermometers (PRTs). They are slowly replacing the use of thermocouples in many industrial applications below 600 °C. -도선의 저항값이 온도에 따라 변하는 것을 측정하여 온도 측정 -도체는 온도가 올라가면 저항이 증가하고, 반도체는 감소한다. Light Measurement Photomultiplier These detectors multiply the signal produced by incident light by as much as 108, from which single photons can be resolved. The combination of high gain, low noise, high frequency response and large area of collection have meant that these devices still find applications in nuclear and particle physics, astronomy, medical imaging and motion picture film scanning (telecine). Semiconductor devices like avalanche photodiodes have replaced photomultipliers in some applications, but photomultipliers are still used in most cases. typically require 1000 to 2000 volts for proper operation. Voltage divider, damage, magnetic field Photoconductive Cell - CdS 등의 반도체에 빛을 쬐어주면, photocarrier가 생겨서 저항이 감소하는 현상을 이용하여 빛을 측정. - 빛이 꺼질때 전류가 줄어드는 속도가 느려서, 가로등 등 느린 응용 분야에 사용 PN Junction Photodiode 역전압을 걸어서, photocurrent생성 측정 PIN diode undoped instrinsic semiconductor layer (이영역을 길게해서, 많은 양의 광전자 생성) PN Junction Solar Cell 전압이 없는 상태에서, photocarrier가 built-in poptential에 의해서 움직이는 전류 측정 phototransistor -CB간에 역전압이 걸린 접합면에서, photocurrent가 흘러서 전류가 흐름 Frequency Response Photodiodes are much faster than phototransistors (nanoseconds vs. milliseconds) Gain Phototransistors have a higher gain. Photodiodes require an amplifier to use. Temperature Response Photodiodes vary less with temperature Optocoupler Optocouplers are used in electronics-sensitive applications. For example, you may use this in a mobile robot application to separate the microcontroller circuitry (low voltage/power) from the motor driver circuitry (high voltage/power). CMOS Image Sensor (CIS) : 현재 대부분의 디지탈 카메라에 사용 TR1 TR3 TR2 -Reset에 Vdd를 걸어서 TR을 켜서 다이오드에 역전압 전하 저장 TR1 TR3 TR2 -빛이 들어오게 셔터를 열어서 photocurrent를 흘려줌으로써, 다이오드의 전하를 서서 뺀다. TR1 TR3 TR2 -셔터를 막아서 빛을 차단하고, Row Sel을 열어서 TR을 열고, Column Sense를 통해 전압 측정. -이때, 다이오드에 있는 역전압크기에 따라 TR의 저항이 변해서 전달되는 저항의 값이 달라짐 Charge Coupled Device (CCD) Image Sensor 전하 전송 방식 -Photodiode에서 만들어진 전하를 모아서, charge coupled device를 통해서 전송해서 이미지 -수평-수직 전송을 병행해서 pixel별로 이미지를 읽어들임 -Photodiode 면적이 CMOS image 센서보다 넓고 전하를 모을 수 있어서, 고감도 저잡음 응용에 적합 -전하 전송을 위하여 상대적으로 고전압이 필요해서, 여러가지 다른 전압원이 필요. 자기장 측정 Giant Magentoresistance(GMR) Sensor GMR 현상 GMR 센서의 예 GMR 센서 칩 하드 디스크 기록방식 하드디스크의 자화선 -두층의 강자성층(Ferromagnetic layer) 사이에, 자성이 없는 도체막이 있는 구조 -GMR 현상 : 외부자기장이 없으면, antiferromagnetic coupling때문에 두 강자성층은 반대방 향으로 자화된다. 이때 여기에 흐르는 전자는 스핀이 안맞아서 잘 흐리지 못하고, 저항이 커 진다. 외부자기장이 있으면, 강자성층이 같은 방향으로 자화되면서, 전자가 스핀이 맞아서 저 항이 줄어들게 된다. -현재 하드디스크에 사용 : Magnetic Field Sensor Hall Sensor Superconducting Quantum Interference Devices (SQUID) superconductor superconductor insulator -왼쪽그래프에서, 반복되는 전압 출력은 SQUID를 관통하는 자속에 비례하여 발생한다. 반복되는 정도는 하나의 자속 양자Φ0 와 같다. 전자기파 측정 라디오 신호 측정 : 광석 라디오 반파 정류 Capacitor를 통해서 고주파를 없애버리는 Low Pass Filter 이어폰 (저항) -안테나 : dipole wire -LC회로를 이용하여 특정 주파수 선정 -다이오드를 통해 반파정류 -RC회로를 통해 고주파 제거 LC회로 (특정 주파수 선정) 방송국 (고주파에 저주파 신호를 얹어서 방송) 라디오 신호증폭 회로 라디오 신호 측정/정류/검파 회로 Non-inverting amplifier for AC 힘 측정 Strain & displacement LVDT: Linear Variable Differential Transformer A strain gauge (alternatively: strain gage) is a device used to measure the strain of an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as superglue.[1] As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor. The gauge factor GF is defined as: where RG is the resistance of the undeformed gauge, ΔR is the change in resistance caused by strain, and ε is strain. strain = deformation 압축형 압전 가속도계 • 그림 (a) : 평판 또는 원판 모양의 압전소자를 베이스와 추(錘) 사이에 고정시킨 구 조 • 그림 (b) : 압전현상의 종효과를 이용한다. • 구조가 간단하고 기계적 강도도 커서 큰 가속도 및 충격 계측에 적합하다. • 그러나 분극방향과 출력방향이 일치하므로 순간적인 온도변화에 의한 출력(이것 을 초전기(焦電氣) 출력이라고 하며, 1[Hz] 이하의 성분을 가진다.)이 발생하기 때 문에 낮은 진동수, 미소레벨의 진동 계측에는 부적합하다. (a) 구조 (b) 분극방향과 출력방향 전단형 압전 가속도계 • 그림(a) : 평판 또는 원통 모양의 압전소자를 사용하여 한쪽의 전극 면에는 무거운 추를, 다른 전극은 베이스에 고정시켜 압전소자에 전단이 발생하도록 한다. • 그림(b) : 압전소자의 분극방향과 출력방향이 직교하기 때문에 온도변화에 의한 출 력이 작아진다. • 압전계수(d15)가 압축형(d33)보다 약 1.5배 크기 때문에 감도를 크게 할 수 있다. • 전단형 가속도계는 일반 기계 진동은 물론 구조물, 지반, 지진 등의 낮은 진동수 계 측, 잡음이 작기 때문에 미소 레벨 계측에 적합하다. 정전용량형 가속도 센서 • 정전용량의 변화를 이용해 가속도를 검출하는 기술은 가속도계에서 가장 널리 사 용 되 는 원 리 이 며 , 다 양 한 형 태 의 정 전 용 량 형 가 속 도 계 (capacitive accelerometer)가 시판되고 있다. • 와셔 모양(washer-shape)의 질량 m이 탄성체(스프링 상수 k)에 매달려 있고, 이 것은 두 개의 원형판 사이에 놓이게 된다. • 상하 두 원형판에는 있는 두 고정전극과 질량은 평행판 커패시터 C를 형성한다. • 그림 (a) : 가속도가 0일 때는 질량 m은 움직이지 않고, 질량-상하부 고정전극 사이의 간격 d는 모두 같다. 따라서 정전용량도 동일하며 (a) 가속도 인가 전 (b) 가속도 인가 후 정전용량형 마이크로 가속도 센서 • 미소한 실리콘 질량과 상하부 전극 사이에는 커패시터가 형성되어 있다. • 실리콘을 미세가공하여 마이크로 크기의 질량을 만든다. 또 유리와 실리콘을 접합한 후, 유리에 상부 전극과 하부 전극을 만든다. • 정전용량형 MEMS 가속도 센서는 2[g]이하부터 수 100[g]의 가속도를 1[kHz]까지 측정할 수 있고, 5000[g] 이상의 충격에도 견딜 수 있다. • 또한 초소형, 저가격이고, 또 하나의 칩에 신호처리회로를 집적화시킨 원 칩(one chip)이거나, 센서 칩 과 신호처리 칩을 하나의 패키지로 하여 고기능화한 것이 대부분이다. • 현재 자동차의 에어 백 등 광범위하게 사용되고 있다. ΔC를 전압으로 변환 경사각 센싱 a : sensitivity 1g 1g • Angle =0 • Output = 0 Earth’s surface • Angle = θ • Output = a 1g sin θ 터치 센서 : Projected Capacitive Touch Screen -유리판 밑에 전극을 깔아서, 한개 전극의 self capacitance 또는 전극간의 mutual capacitance를측정 진공상태 측정 Vacuum gauges Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure pressure are called pressure gauges or vacuum gauges. A manometer could also be referring to a pressure measuring instrument, usually limited to measuring pressures near to atmospheric. The term manometer is often used to refer specifically to liquid column hydrostatic instruments. A vacuum gauge is used to measure the pressure in a vacuum Bourdon Gauge (부르돈 게이지) Pressure-vacuum gauge face and dial Overview of pressure-vacuum gauge mechanical parts (back view) -In 1849 the Bourdon tube pressure gauge was patented in France by Eugene Bourdon. -The pressure sensing element is a closed coiled tube connected to the chamber or pipe in which pressure is to be sensed. As the gauge pressure increases the tube will tend to uncoil, while a reduced gauge pressure will cause the tube to coil more tightly. This motion is transferred through a linkage to a gear train connected to an indicating needle. The needle is presented in front of a card face inscribed with the pressure indications associated with particular needle deflections. Gauge heads are specified by their maximum measured pressure (25,000 Torr down to 1 x 10-1 Torr), with each head having a dynamic range of approximately 104 below that. Accuracies of 0.25% gauge reading are common, with 0.08% available from high-accuracy products. Diaphragm Manometers Like the capacitance manometer, these gauges use the deflection of a thin metal (or silicon) diaphragm separating a known pressure from an unknown pressure. However, in this type of gauge, the deflection is sensed by a strain gauge attached to the diaphragm. While this limits the minimum measurable pressure to 1 Torr, it does provide a stable, repeatable, device reading pressures up to 1,200 Torr. Pirani Gauge A Pirani gauge consists of a metal wire open to the pressure being measured. The wire is heated by a current flowing through it and cooled by the gas surrounding it. If the gas pressure is reduced, the cooling effect will decrease, hence the equilibrium temperature of the wire will increase. The resistance of the wire is a function of its temperature: by measuring the voltage across the wire and the current flowing through it, the resistance (and so the gas pressure) can be determined. This type of gauge was invented by Marcello Pirani. Thermocouple gauges and thermistor gauges work in a similar manner, except a thermocouple or thermistor is used to measure the temperature of the wire. Useful range: Although the dynamic range for any single gauge matches the T/C, Pirani's cover a pressure range from about 10 Torr to 1 x 10-5 Torr. Thermocouple gauges: 1 torr ~ 1utorr The pressure range between 10 Torr and 10-3 Torr is indicated by measuring the voltage of a thermocouple spot-welded to a heated filament exposed to system gas. The filament, fed from a constant current supply, reaches a temperature determined by the amount of energy extracted by the gas. At higher pressures, more molecules hit the filament and extract more energy than at low temperatures. The filament temperatures induce thermocouple voltage changes. These gauges are used extensively in foreline monitoring and to provide the signal to automatically switch the main chamber from backing and high-vacuum pumps at the crossover pressure. Ion Gauge Bayard/Alpert ionization gauge Ionization gauges are the most sensitive gauges for very low pressures (high vacuums, AKA "hard" vacuums). They sense pressure indirectly by measuring the electrical ions produced when the gas is bombarded with electrons. Fewer ions will be produced by lower density gases. The calibration of an ion gauge is unstable and dependent on the nature of the gases being measured, which is not always known. Thermionic emission generate electrons, which collide with gas atoms and generate positive ions. The ions are attracted to a suitably biased electrode known as the collector. The current in the collector is proportional to the rate of ionization, which is a function of the pressure in the system. Hence, measuring the collector current gives the gas pressure. There are several sub-types of ionization gauge. Useful range: 10-10 - 10-3 torr (roughly 10-8 - 10-1 Pa) 저진공 펌프 Rotary Vane Pumps Diaphragm Pumps The eccentrically mounted rotor compresses the gas and sweeps it toward the discharge port. When gas pressure exceeds atmospheric, the exhaust valve opens and gas is expelled. Oil is used as a lubricant, coolant, and gas sealant for the vanes. Single stage rough rotary vane pumps have ultimate pressures around 10-2 Torr range while two stage rough vane pumps reach 10-3 Torr. Pumping speeds vary from 1–650 cfm, depending on whether the pump is a coarse vane or rough vane pump. In general, diaphragm pumps have low pumping speeds (<10 cfm) and produce a poor ultimate vacuum (1 Torr to 10 Torr). However, they do exhaust into the atmosphere and their low costs make them attractive roughing pumps. Pressure Units Mechanical roughing pumps, diffusion or ion pumps pascal (Pa) technical atmosphere (at) bar (bar) 2 −5 1.0197×10 −5 atmosphere (atm) torr (mmHg) −6 7.5006×10 9.8692×10 −3 pound-force per square inch (psi) 145.04×10 1 Pa ≡ 1 N/m 10 1 bar 100 000 ≡ 10 dyn/cm 1.0197 1 at 98 066.5 0.980665 1 atm 101 325 1.01325 1 torr 133.322 1.3332×10 −3 1.3595×10 −3 1.3158×10 −3 ≡ 1 mmHg 19.337×10 1 psi 6 894.76 68.948×10 −3 70.307×10 −3 68.046×10 −3 51.715 ≡ 1 lbf/in 6 2 0.98692 750.06 14.504 ≡ 1 kgf/cm 0.96784 735.56 14.223 1.0332 ≡ 1 atm 760 14.696 2 −6 −3 2 물질의 특성 측정 4 Probe Measurement E -저항선의 저항을 측정할때, 프로브와의 접촉면에서의 접촉저항이 문제가 될 수 있다. 예를들어, 위의 1-4간의 전류 I1-4를 측정하였을 경우, Ammeter의 저항이 거의 0이 라고해도, 1, 4번 probe와 저항선간에는 그값을 알 수 없는 접촉저항이 있어서, 1-4 간의 저항값은 알 수가 없다. -4 probe 방법의 경우, 1-4간의 전류 I1-4 와 2-3간의 전압 V2-3를 측정한다. -이때, 2-3간에 흐르는 전류는 1-4간의 전류와 같을 수밖에 없다. -또한, 2와 3번 probe를 통해서는 전류가 들어가지 않으므로, 접촉저항에 의한 전압 측정 오차는 없다. -따라서, 2-3간의 저항 R은, R2-3 = V2-3 / I1-4 혈당 센서(현재 바이오 센서 시장의 ~80%) -글루코스 산화효소가 글루코스(포도 당)를 산화시키면서 생기는 전자를 전극으로 받아들여, 전류를 측정하 여, 글루코스 레벨 측정 -당뇨병환자의 경우 주기적은 혈당레 벨의 측정이 필요 반도체식 가스센서 센서의 저항값의 증감여부에 따라 조절이 가능한 회로 히터가 필요한 가스센서용 기본회로 -일산화탄소 경보기는 SnO2필름을 반도체 채널로 사용. -이경우, 깨끗한 공기에서는 산소가 붙어서 필름내의 전하를 잡아서, 저항이 크 다가, 일산화탄소가 와서 산소를 빼앗아가면 전기전도도가 증가한다. 고에너지 입자 측정 고에너지 입자 측정 방법 Geiger counter Scintillator Solid-state detectors surface-barrier detectors Cerenkov detectors Ionization chambers shower chamber scintillation chamber drift chambers Geiger Counters It is used to detect radiation usually gamma and beta radiation, but certain models can also detect alpha radiation. The sensor is a Geiger-Müller tube, an inert gas-filled tube (usually helium, neon or argon with halogens added) that briefly conducts electricity when a particle or photon of radiation temporarily makes the gas conductive. The tube amplifies this conduction by a cascade effect and outputs a current pulse, which is then often displayed by a needle or lamp and/or audible clicks. A Geiger-Müller tube (or GM tube) is the sensing element of a Geiger counter instrument that can detect a single particle of ionizing radiation, and typically produce an audible click for each. It was named for Hans Geiger who invented the device in 1908, and Walther Müller who collaborated with Geiger in developing it further in 1928.[The current version of the "Geiger counter" is called the halogen counter. It was invented in 1947 by Sidney H. Liebson (Phys. Rev. 72, 602–608 (1947)). Geiger-Müller tube