Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Outline Order statistics Distribution of order variables (and extremes) Joint distribution of order variables (and extremes) Probability theory 2008 Order statistics Let X1, …, Xn be a (random) sample and set X(k) = the kth smallest of X1, …, Xn Then the ordered sample (X(1), X(2), …, X(n)) is called the order statistic of (X1, …, Xn) and X(k) the kth order variable Probability theory 2008 Order variables - examples Example 1: Let X1, …, Xn be U(0,1) random numbers. Find the probability that max(X1, …, Xn ) > 1 – 1/n Example 2: Let X1, …, X100 be a simple random sample from a (finite) population with median m. Find the probability that X(40) > m. Probability theory 2008 Distribution of the extreme order variables n FX ( n ) ( x) P( X 1 x, ..., X n x) P( X k x) ( F ( x)) n k 1 f X ( n ) ( x) ... n FX (1) ( x) 1 P( X 1 x, ..., X n x) 1 P( X k x) 1 (1 F ( x)) n k 1 f X (1) ( x) ... Probability theory 2008 The beta distribution For integer-valued r and s, the beta distribution represents the rth highest of a sample of r+s-1 independent random variables uniformly distributed on (0,1) (r , s), r , s 0 f ( x) Γ (r s) r 1 x (1 x) s 1 , 0 x 1 Γ (r ) Γ ( s) E( X ) r rs Probability theory 2008 =r =s The gamma function Γ (r ) x r 1 exp( x) dx, r 0 0 Γ (1) 1 Γ (r 1) rΓ (r ), r 0 Γ (n) (n 1)! Probability theory 2008 Distribution of arbitrary order variables n FX ( k ) ( x) P({exactly i of the variables X 1 , ..., X n x}) i k n ( F ( x)) i (1 F ( x)) n i i k i n Probability theory 2008 A useful identity z n i Γ (n 1) n i k 1 nk z (1 z ) y ( 1 y ) dy Γ (k ) Γ (n 1 k ) 0 ik i n for k 1, ..., n and 0 z 1 Can be proven by backward induction Probability theory 2008 Distribution of arbitrary order variables n FX ( k ) ( x) ( F ( x)) i (1 F ( x)) n i i k i n Γ (n 1) Γ (k ) Γ (n 1 k ) F ( x) k 1 nk y ( 1 y ) dy 0 that is F X ( k ) ( x) F ( k ,n 1 k ) ( F ( x)), k 1, ..., n Probability theory 2008 Distribution of arbitrary order variables from a U(0,1) distribution Γ (n 1) k 1 nk FX ( k ) ( x) y ( 1 y ) dy Γ (k ) Γ (n 1 k ) 0 x that is F X ( k ) ( x) F ( k ,n 1 k ) ( x), k 1, ..., n Probability theory 2008 Joint distribution of the extreme order variables n(n 1)( F ( y ) F ( x)) n 2 f ( y ) f ( x), for x y f X (1 ) , X ( n ) ( x, y ) 0, otherwise Proof : FX (1) , X ( n ) ( x, y ) P( X (1) x, X ( n ) y ) P( X ( n ) y ) P( X (1) x, X ( n ) y ) ... Probability theory 2008 Functions of random variables Let X have an arbitrary continuous distribution, and suppose that g is a (differentiable) strictly increasing function. Set Y g( X ) Then FY ( y) P(Y y) P( X g 1 ( y)) FX ( g 1 ( y)) and d 1 d 1 1 fY ( y ) f X ( g ( y )) g ( y ) f X ( g ( y )) g ( y ) dy dy 1 Linear functions of random vectors Let (X1, X2) have a uniform distribution on D = {(x , y); 0 < x <1, 0 < y <1} Set Then . a1 b11 b12 X 1 Y a BX a2 b21 b22 X 2 1 | det( B 1 ) | f (Y1 ,Y2 ) ( y1 , y2 ) | det( B) | 0, otherwise Functions of random vectors Let (X1, X2) have an arbitrary continuous distribution, and suppose that g is a (differentiable) one-to-one transformation. Set (Y1 , Y2 ) g ( X1 , X 2 ) Then x1 f (Y1 ,Y2 ) ( y1 , y2 ) f ( X1 , X 2 ) (h1 ( y1 , y2 ), h2 ( y1 , y2 )) xy1 2 y1 where h is the inverse of g. Proof: Use the variable transformation theorem x1 y2 x2 y2 Density of the range Consider the bivariate injection U X (1) X (1) h1 (U , R) U R X ( n ) X (1) X ( n ) h2 (U , R) U R Then 1 0 J 1 1 1 fU , R (u, r ) f X (1) , X ( n ) (u, u r ) and f R (r ) f X (1) , X ( n ) (u, u r ) du Probability theory 2008 Density of the range f Rn (r ) n(n 1) ( F (u r ) F (u )) n 2 f (u r ) f (u )dr , r 0 Probability theory 2008 The range of a sample from an exponential distribution with mean one f Rn (r ) (n 1)(1 exp( r )) n 2 exp( r ), r 0 FRn (r ) (1 exp( r )) n 1 ( F (r )) n 1 , r 0 Probabilistic interpretation of the last equation? Probability theory 2008 Joint distribution of the order statistic Consider the mapping (X1, …, Xn ) (X(1), …, X(n)) or . X (1) X1 . . . P . . . X X ( n ) n where P is a permutation matrix Probability theory 2008 Joint density of the order statistic n n! f ( yk ), if y1 ... yn f X (1) , ..., X ( n ) ( y1 , ..., yn ) k 1 0, otherwise Probability theory 2008 Exercises: Chapter IV 4.2, 4.7, 4.9, 4.12, 4.14, 4.17 Probability theory 2008