Download Current mirror design.pps

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Current mirror design
In AMIS CMOS 07
by Roman Prokop
Simple current mirror
VGS  VT 0  VGS
Saturace
VDS  VGS ,
recommende d VGSMIN  200mV
ID 
K p .W
2.L
(VGS  VT 0 ) 2
W / L calculatio n
W
I D .2

L K p (VGS ) 2
AMIS CMOS 07 param
VT0 & KP = f (T, process) graphs
• NMOS
Process
VT0 [V]
Kp [A/V2]
Temp [°C]
Typ
0.75
9. 10-5
27
Fast
0.7
1.75 .10-4
-50
Fast
0.45
7 .10-5
150
Slow
1.00
1.25 .10-4
-50
Slow
0.75
5 .10-5
150
W/L calculation for typ parameters
ID 
K p .W
2.L
(VGS  VT 0 ) 2
Choose ∆VGS= 250 mV
&
ID= 20 μA
W
I D .2

 7.11  7
2
L K p _ typ (VGS )
Ideal Vds1=Vds2
solution
- Decrease the Vds influence  large L
- cascoda
ID 
K p .W
2.L
(VGS  VT 0 ) 2 .(1  .VDS )  simplified
min. ∆VGS
∆VGS
I D .2.L
VGSMIN 
 179mV
Kpmax .W
VGS  VT 0  VGS
max.
VGSMAX 
I D .2.L
 335mV
Kpmin .W
 the worst cases
VGS _ fast50  0.7  0.179  0.879 V
VGS _ slow150  0.75  0.335  1.085 V
VGS _ fast150  0.45  0.28  0.733 V
VGS _ slow50  1.00  0.212  1.212 V
Then input current can vary between (even for fix (dummy) resistor R)
Vcc  VGSM 1
5  (0.75  0.25)
;
I INtyp 
 20 A
R
200k
5  0.733
5  1.212
I IN max 
 21.335 A
I IN max 
 18.94 A
200k
200k
I IN 
150°C hipo(min)IIN ↑
-50°C hipo(max)IIN ↓
How to get fixed voltage for current mirror biasing ?
How to get fixed voltage for current mirror biasing ?
I mirr
Ucc  Uref

.N
R
I mirr
Uref

.N
R
better – doesn’t depend on Ucc
Matching hand calculation
Premise
- 2 transistors in common centroid (crossquad)
- ideal surrounding
A1
A2
A1
B1
B2
A2
B1 B2
Instructions in:
“Electrical parameters CMOS07” manual (ds13291.pdf)
Exemplary calculation – choose W/L=7  W/L= 35u/5u
quite small MOS
Matching
Error in VT0
Error in β
4
2
(I d / I d )  (VT 0 ) .

(



/

)
(VGS  VT 0 ) 2
2
2
where
2
2
(VT 0 ) 2  AVT
/
WL

C
0
VT 0
( /  ) 2  A2 / WL  C2
Statistical errors –
- count under square root
For good matching (small current difference)
- larger MOS  high WL
- higher (VGS – VT0)
Matching
Table is valid for NMOS, PMOS parameters in electrical parameters
Carefully: units
mV, μm, %
Matching
2
2
3 2
3 2
7
2
(VT 0 ) 2  AVT
/
WL

C

(
11
.
5
e
)
/(
5

35
)

(
0
.
2
e
)

7
.
957
e
V
0
VT 0
(VT 0 )  0.892 mV
( /  ) 2  A2 / WL  C2  (2.5e  2 ) 2 /(5  35)  (0.05e  2 ) 2  3.82e 6
( /  )  1.95e 3
(I d / I d ) 2  (VT 0 ) 2 .
4
2

(



/

)

2
(VGS  VT 0 )
 7.957e 7 .
4
 3.82e 6  5.47e 5
2
(0.25)
(I d / I d )  7.399e 3
I d  (I d / I d ) . I d  7.399e 3 . 20A  0.148 A
I d (cadence result )  0.1495 A
for 1 sigma
for 1 sigma
Matching
Cadence matching tool output file
Biasing currents
Usually use buffered band-gap reference voltage
1 - External resistor
- accurate resistance value, almost temperature
independent
2 – Hipo internal resistor
- hipo resistance 2000 Ω (1600 Ω - 2400 Ω)
- temperature dependence - viz. parameterFile
3 – other CMOS resistor types
- not used because of small sheet resistance
One chip can combine both types of bias currents
Biasing currents
Hipo internal resistor bias current advantages
- temperature dependent current can help with
stability of some circuits
- quite accurate voltage level shifter
U out  U ref .
R2
.N
Rbias
U out  U ref .
R2
.N  VDS _ M 2
Rbias
Current mirror and resistor MATCHING !!!!
U out  U ref .
R2
.N  U 2
Rbias
Cascoded mirror output resistance
express It it  gm4 .vgs 4 
where
it  gm4 (it .ro2 ) 
it .( gm4 .ro2 
vt  (v4 )
ro4
vgs 4  it .ro2
vt
ro
 it 2
ro4
ro4
v
ro2
 1)  t
ro4
ro4
Rocasc  gm4 .ro2 .ro4
vt
 gm4 .ro2 .ro4  ro2  ro4
it
negligible
Good luck !!!
Related documents