* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Aneesh - Department Of Mathematics
Approximations of π wikipedia , lookup
History of mathematics wikipedia , lookup
Mathematics wikipedia , lookup
Elementary mathematics wikipedia , lookup
Principia Mathematica wikipedia , lookup
Ethnomathematics wikipedia , lookup
Discrete mathematics wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Mathematical anxiety wikipedia , lookup
Secondary School Mathematics Curriculum Improvement Study wikipedia , lookup
Oscillator representation wikipedia , lookup
Non-standard analysis wikipedia , lookup
Foundations of mathematics wikipedia , lookup
List of important publications in mathematics wikipedia , lookup
1
Name of the staff
:
Prof. M. N. Narayanan Namboodiri.
Designation
:
Emeritus Professor
Department
:
Department of Mathematics
Section (if any)
:
Gender
:
Male
Place
:
Tripunithura
City
:
Cochin
Pin Code
:
State
:
Kerala
Home Phone Number
:
0496-2696594
Mobile Number
:
+919446505953
Email address
:
mnnadri@gmail.com
House Name
:
2
AREA OF INTEREST
Functional Analysis, Spectrum of operators, Toeplitz operators, Korovkin-type
Approximation theory.
POSITIONS HELD
1. UGC Emeritus Professor at Department of Mathematics, CUSAT Since
01.12.2015.
2. Visiting Professor at Indian Institute of Palakkad during August 2015 to
December 2015.
3. Faculty at Department of Mathematics, CUSAT from 1986 to 2014.
4. Faculty at Department of Mathematics, Kerala University from 1984 to
1986.
DETAILS OF ARTICLES PUBLISHED
1. L.Golinskii, Kiran Kumar, M.N.N. Namboodiri, Stefano Serra
Cappizzano, “A note on a discrete version of Borg’s Theorem via
Toeplitz-Laurent operators with matrix-valued symbols” (Bolletino
U.M.I (9) VI (2013) 205-218 )
2. Kiran Kumar, M.N.N. Namboodiri, Stefano Serra Cappizzano,
“Perturbation of operators and approximation of spectrum” (Proceedings
of Indian Academy of Science (Math. Sci.) Vol. 124, No.2, May 2014,
pp. 205-224)
3. Kiran Kumar, M.N.N. Namboodiri, Stefano Serra Cappizzano,
“Preconditioners and Korovkin-type Theorems for infinite dimensional
bounded linear operators via Completely Positive Maps” (Studia
Mathematica, 218 (2), 2013, 95-118)
4. Namboodiri, M. N. N.; Pramod, S.; Vijayarajan, A. K. Finite
dimensional Čebyšev subspaces of $C\sp \ast$-algebras. J. Ramanujan
Math. Soc. 29 (2014), no. 1, 63—74
5. Namboodiri, M. N. N.; Remadevi, S. Szegö limits and Haar wavelet
basis.Aust. J. Math. Anal. Appl. 9 (2012), no. 2, Art. 3, 11 pp.
6. Namboodiri, M. N. N. Geometric theory of weak Korovkin sets. Oper.
Matrices6 (2012), no. 2, 271--278.
3
7. Kulkarni, S. H.; Nair, M. T.; Namboodiri, M. N. N. An elementary
proof for a characterization of $\sp *$-isomorphisms. Proc. Amer. Math.
Soc. 134 (2006), no. 1, 229--234
8. Namboodiri, M. N. N.; Remadevi, S. A note on Szegö's theorem. J.
Comput. Anal. Appl. 6 (2004), no. 2, 147--152.
9. Namboodiri, M. N. N. Theory of spectral gaps—a short survey. J.
Anal. 12 (2004), 69--76.
10. Namboodiri, M. N. N.; Nair, Sindhu G. Collectively compact
elementary operators and its applications. Linear algebra, numerical
functional analysis and wavelet analysis, 139--146, Allied Publ., New
Delhi, 2003.
11. Namboodiri, M. N. N.; Chithra, A. V. Approximation number
sets. Linear algebra, numerical functional analysis and wavelet
analysis, 127--138, Allied Publ., New Delhi, 2003.
12. Namboodiri, M. N. N. Truncation method for operators with discounted
essential spectrum. Spectral and inverse spectral theory (Goa,
2000). Proc. Indian Acad. Sci. Math. Sci. 112 (2002), no. 1, 189--193.
13. Böttcher, A.; Chithra, A. V.; Namboodiri, M. N. N. Approximation of
approximation numbers by truncation. Integral Equations Operator
Theory 39(2001), no. 4, 387--395.
14. Limaye, B. V.; Namboodiri, M. N. N. Weak approximation by positive
maps on $C\sp \ast$-algebras. Math. Slovaca 36 (1986), no. 1, 91--99.
15. Limaye, B. V.; Namboodiri, M. N. N. A generalized noncommutative
Korovkin theorem and $\ast$-closedness of certain sets of
convergence. Illinois J. Math. 28(1984), no. 2, 267--280.
16. Limaye, B. V.; Namboodiri, M. N. N. Weak Korovkin approximation
by completely positive linear maps on $\beta(H)$. J. Approx.
Theory 42 (1984), no. 3, 201--211.
17. Limaye, B. V.; Namboodiri, M. N. N. Korovkin-type approximation
on$C\sp{\ast} $-algebras. J. Approx. Theory 34 (1982), no. 3, 237--246.
18. Limaye, B. V.; Namboodiri, M. N. N. Approximation by positive
functionals. J. Indian Math. Soc. (N.S.) 43 (1979), no. 1-4, 195--202
(1980).
4
Books Published/ Edited:
1. Linear algebra, numerical functional analysis and wavelet analysis.
Proceedings of the International Workshop held at Cochin University of
Science and Technology, Kochi, August 6–15, 2001. Edited by S. H.
Kulkarni and M. N. N. Namboodiri. Allied Publishers Private Limited,
New Delhi, 2003. xii+215 pp. ISBN: 81-7764-506-4
DETAILS OF CONFERENCES/WORKSHOPS ORGANIZED
1.
International Workshop held at Cochin University of Science and
Technology, Kochi, August 6–15, 2001.
2.
Winter School on Functional Analysis at Cochin University of
Science and Technology, Kochi, November 28 to December 15, 2001.
3.
International Workshop and Conference on Operator & Spectral
Theorey, Operator Algebras, Non-Commutative Geometry & Probability at
Kerala School of Mathematics, Kozhikode, February 7-14, 2014.